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Electromagnetically Induced Transparency with Matched Pulses
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'Aje show that electromagnetically induced transparency in a dense media is not a Beer's law superpo-
sition of the single atom response. When an arbitrarily shaped pulse is applied to an ensemble of
population-trapped atoms, the atoms will generate a matching pulse shape on the complementary transi-
tion and, after a characteristic distance, render themselves transparent.

PACS numbers: 42.50.Rh, 32.80.0z, 42.50.Hz, 42.65.Ky

The Hamiltonian describing the interaction of two
atomIc states which ale coupled to a common third state
by resonant electromagnetic fields is easily diagonalized.
Of the three eigenstates, one state, denoted here by ~

itt ),
has components of bare states ~1) and ~2) and not of' bare
state ~3). These components have amplitudes and phases
which oppose those of the driving fields, thereby decou-
pling and trapping population in ~itt ). Because ~itt ) has
no component of bare state ~3), it has a zero eigenvalue
even when state ~3) is lifetime or collisionally broadened,
or is replaced by a continuum [1-3]. Many applications
[4] and experiments [5] showing how opticallv thick tran-
sitions may be rendered nearly transparent have been re-
ported.

In this Letter we show that an ensemble of atoms, all
of which are in state ~iit ) and are probed by an elec-
tromagnetic field with a time-varying envelope, establish
transparency through a strong nonlinear interaction and
that the transparency of an optically thick medium is not
a Beer's law superposition of the independent atom
response. Oft resonance Fourier components of a probing
pulse which, in the independent atom model, are com-
pletely absorbed; instead, after a characteristic propaga-
tion distance, experience no further absorption. The
essence of this eAect is the generation of matching,
correctly phased frequency components on the alternate
transition (Fig. 1), and therefore of temporally matched
envelopes which are decoupled from the atom. In a
ladder system, phase conjugate envelopes are generated
and decoupled.

Dalton and Knight [6] have suggested the use of criti-
cally cross-correlated fields to enhance population trap-
ping. Other nonlinear ef",ects which create transparency
by interference have been discussed. These include the
interplay of third-harmonic generation and multiphoton
ionization, and of sum-frequency generation and resonant
absorption [7]. New techniques for the study of' the large
signal behavior of multiply resonant systems [8] have re-
cently been developed. A theoretical study of the prob-
lem of the simultaneous propagation of diAerent wave-
length optical pulses has been given by Konopnicki and
Eberly [9]. Their work is in the spirit of self'-induced
transparency where atoms cycle through bare state ~3).
In the present work, following an initial transient and for

where to& = (vo3 —to i ), vo, = (vo3 —to2), and define the
magnitudes of the Rabi frequencies Q~ =—p i 3E„jh,
0, —=pq3F. ,jh, and 0, =(Qz+ 0,). To allow for ampli-
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I. IG. l. Energy level diagram for prototype lambda system
showing matching frequency components m~+cu and cu, + ~.
Inset: The imaginary part of' the single atom line shape I (cu)
with &. =1 sj2.

exactly matched pulses, bare state ~3) is empty.
An energy level diagram for the prototype lambda sys-

tem is shown in Fig. 1. %e assume the ideal case f'or
population trapping: complete metastability of states ~1)
and ~2&; lif'ctime decay of state ~3) with a rate I 3 to states
or continua which are not shown, but not to state ~1) or
~2&; and no inhomogeneous broadening. The inset shows
the absorption cross section, as a function of probe fre-
quency, for a single atom in state ~iit ). Here, only the
Fourier component of an applied pulse with zero detuning
has zero loss.

We assume applied electromagnetic fields

& (t) =R [e[1+f(t)]F exp[j(vo t+6 )]j,
E, (t) =Re [[1+g(t)]E,exp[j (to, t+ e, )][,
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tude and phase fluctuations, the quantities f(t) and g(t) are complex. Ep, Op, E„and 0, are real, positive, and time in-
variant and the matrix elements p;~ are real. The functions f(t) and g(t) may vary rapidly, subject only to the
rotating-wave approximation.

In the basis set of the bare atom Ho~i) =hen;~i), the Hamiltonian with phenomenological damping of bare state ~3)
and the dipole moment operator P are

3

H= 2 tt~;lt&&tI —jh '13&&3I —[t 13Ep«)I»&3I+t »E,«)12&&3I+H.c.],
i=1

(2)
P p[3~1)(3)+pz3(2&(3~+H.c.

E„(t) and E, (t) interact only with the /I&-/3) and /2)-/3) transitions, respectively, and counterrotating terms are
neglected. We transform from the Schrodinger vector /y) to a vector /a) by /a) =U/y), with U=U2Uq,

U& = [exp[ j(re—t + Op)]})1)(1/+ Iexp[ j(c—o, t+ 0, )]}/2)(2/+ /3)(3/,

4&(n, /n, ) I »& I
I

—~&(n p/n, )1»&21+(n pin. ) I2&& I I+«,/n, ) l»&21 (3)

—I»&3 I+ (n, /n, ) I3&& I I+ (n, /n, ) I3&&2 I+ I»&3 l]

and take F03=0, so that co~ = —
cop and co2= —co, . This transformation takes the (population-trapped) Schrodinger

state

~

y'& = I(n, /n, ) exp[j(tu, t+ 8„)]}
~

I &+ [—(n, /n, ) exp[j(~,t+ 9, )}~2)+0~3)

into Ia'& =Ul y') =
I
»

With this transformation, Schrodinger s equation is

' +Ml~) =D«)la&,
dt

I3 0, I3
4 2
'+i '

I2)&2I+
4 J

0, I3 I3
2, 4 4

(4)

D(t) =—
& J2[npfR, (t)+n,'gtt. (t)][~2)&2~ —

~
&3( ~3] +J2[npft (t)+n,'gtm(t)][ —jl2&&3I+H.c] '

2Jzn, .

[[f(t)—g(t)] [/1&&2/ —/1&&3/]+ H.c.} .
2JXn,

The monochromatic portion of the assumed fields may be
eliminated by setting 0, in M equal to zero and leaving
D(t) unchanged. We observe that, if the pulse envelopes
f(t) and g(t) are equal, then state ~a ) = ~1) is decoupled
from the electromagnetic field.

In general, the pulse envelopes are diA'erent and pro-
duce a polarization on both the (bare)

~
I)-~3) and ~2)-~3&

transitions. To allow a model calculation, we assume that
f(t) —g(t) is zero until after a transient period during
which ~a ) is established. During this period a fraction
n, /n, of the population of the ground state projects
against ~y ) and is trapped, and a fraction np/n, is dep-
leted from the system. When 0, ~ I 3, this transient
period lasts for several units of I 3/n, .

To calculate the polarization, we proceed perturbative-
ly and replace ~a) on the right-hand side of Eq. (4) by
~a ) and on the left-hand side by ~a ') and solve with the
boundary condition ~a'(t=O))=0. For the perturbative
approach to be valid, ~a & must not be depleted by virtual

or real transitions to the other eigenstates. This imposes
a limit on the magnitude (power) and integral over time
(energy) of ~f(t) g(t)~ . These—limits depend on the
spectral content of f(t) and g(t) and are most severe
when the Fourier components of both functions are near
n, /2; if so, (f(t) —g(t)( must be less than I 3n, /n, np,
and the integral of

~f(t) g(t)
~

mus—t be less than
I 3n, /n, n . It is also required that npf ~

+ n,
xf fg'«, n

We proceed in the frequency domain and define F(co)
and 6 (to) as the Fourier transforms of the envelope
quantities f(t) and g(t). To first order of perturbation
each Fourier component at the optical frequency mz+m
produces a dipole moment at its own frequency and at the
frequency cu, +m; similarly, a component at co, + co cou-
ples to itself, to co&+co, and to no other Fourier com-
ponents. The polarization (a

~
UPU '

~
a ') +c.c. =P„(t)

+P, (t) is
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Pp(t) =—xp]30' A, W &+

n,'
Re' „L(co)[F(co) —G(co)] exp[j(cop+ co)t+Op]des ',

P, (t) =—nP23 A, OpN &+
Re

0 Q —oo
S

L (nI) [G(co) —F(co)] exp[j(co, + co) t+ O, ]den ', (5)

2I 3'
L(co) =-

ns2 2jI

The quantity L (cu) is the normalized line shape,

I+— ImL(nr)dco= 1, and N is the atom density. We may
view the replication of the Fourier transform of f(t) onto
the dipole moment at co, as resulting from the mixing of
each Fourier component with the phased ~l)-~2) transi-
tion.

Continuing in the frequency domain we use the polar-
ization from Eq. (5) to write slowly varying envelope
equations for F(co) and G(co) as a function of distance
[10]. We assume collinear propagation and take k(co~),
k(co, ), k(nIz+co), and k(co, +co) as the k vectors of the
respective frequencies. These k vectors include contribu-
tions to the polarization which result from the portion of
the ~1&-~3) and ~2)-~3) transitions which have not been
included in the rotating-wave approximation and from
other transitions of the atom. With the definition hk
= [k (co, + nI) —k (co, ) ] —[k (co, + nI ) —k (co, ) ], the cou-
pled propagation equations for F(co) and G(co) are

c)F(co) + KffF(Co ) + K'fg G (nI ) =0,
Bz

c)G(co) + KggG (M) + Irgf F(nI) =0,
Bz

troop p I'3L (co)
K'ff j 2cegh

Kfg Kff exp(jAkz )

Irco, p p3L (co )
K'gg = j

2cc()6

n,'Ã
A S

OpÃ

0 S

(6)

Icgf = —
Icgg exp( —jAkz ) .

Since there is absorption only when cu is on the order of
the larger of 0,, or I 3, the dispersion caused by other
transitions will usually be negligible. (The dispersive
contributions of the ~1)-~3) and ~2)-~3) transitions are in-

cluded within the x.;, .) With Ak =0, the solution of Eq.
(6) is

F(n), z =0) G(co, z =0)
F(cu, z) = ' [Icgg+ Icff exp[ —(Icff+ Icgg)z]}+ '

IIcff —Icff exp[ —(Icff+ Icgg)zl],
K'ff + K'gg Kff + Kgg

(7)

G (N z ) [Kff + Icgg ex p [—( Icff + x gg )z ]] + ' [xgg
—

Icgg exp [ —( Icff + Icgg )z ]]
G(nI, z =0) F(co,z =0)

~ff + ~gg Kff + Kgg

The quantities of Icff and Icgg are the independent atom propagation constants of the ~1&-~3) and ~2&-~3) transitions, re-
spectively. [Noting that 0~+0, =Q„we recognize the factors A, N/0, and O~N/0, in Eq. (6) as the populations of
bare states ~1) and ~2), respectively. ]

At a distance where, for an independent atom, a particular spectral component F(co) or G(cu) would be absorbed it is
instead approaching its asymptotic value. For any
boundary condition the ratio of the asymptotic values of
F(co) and G(co) is

F(ca,z)
G(co, z)

0.8-
(c)

To the extent that all spectral components would be ab-
sorbed, f(t) =g(t); and state ~a ) is decoupled. When
the normalized fields f(t ) and g (t ) are equal, the actual
fields have a ratio E„exp(jO&)/E, exp(jO, ) and are there-
fore matched to the monochromatic components.

Figure 2 shows the nonlinear behavior as compared to
the independent atom (Beer's law) behavior. Two bound-
ary conditions are shown: G(co, 0) =0 and G(co, 0) =F(co,
0)2135'. The latter boundary condition is an example of
how, irrespective of their initial phase, the electromagnet-
ic fields at frequencies m~ and m, will continue to interact
until F(co) =G(co).
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FIG. 2. ~F(co,z)/F(co, O)
~

vs distance for (a) independent
atoms with absorption coeScients Kff 0.89 and egg =0; and
coupled atoms with off =0.8 and egg =0.2 and boundary condi-
tions (b) G(aI, O) =0 and (c) G(cu, O) =F(cu, 0)L135',
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We next summarize the results for a ladder system
where state ~2) is above state ~3). In Eq. (4), g(t) be-
comes g*(t). In a ladder system the condition for decou-
pling of'state ~a ) is f(t) =g*(t). In Eq. (6), the variable
G (co) becomes G * ( —cu); the quantities tcff and tcfs
remain the same, but ~~~ and K~f change sign. When the
absolute value of the real part of rczz is less than that of
tcff, then at large z, g*(t ) f(t ). When the absolute
value of the real part of ~~~ is greater than that of rcff,
there is exponential gain on both transitions and the
matched condition is not attained.

Equation (7) applies when state ~3) is replaced by a
symmetric structureless continuum. The tc;~ of Eq. (6),
expressed in terms of the photoionization cross sections
o~ and n., and the golden rule ionization rates 8'~, H „
and W,„=W„+W, of bare states ~1) and ~2) to the con-
tin u urn, are

tcff = j(Wt, /—W, )cr„NL (tu), tcfs = —
tcff exp(j tt, kz ),

test = —j(W, /W, )o,lVL(co), ted = —tcssexp( —jhkz),
where L (co) =jco/(2co —jW, ).

This transparency results from the special property of
~ y ), which causes what are normally considered as non-
linear terms to be as important as the linear terms. If, at
fixed A~, one reduces A„population is forced to bare
state ~2), thereby reducing both the linear and nonlinear
contributions to the polarization at f(t) in the same ratio.
At sufficient]y small 0,/0, this behavior must fail, be-
cause of both the neglect of inhomogeneous broadening
and the failure of the rotating-wave approximation. The
latter failure occurs because at small 0,/Q„and there-
fore small population of state ~1), other transitions con-
tribute to the polarization at f(t).

The question of the preparation of state
~ y ) has not

been adequately addressed. In order to have a reasonably
simple mathematical model, we have assumed that the
time-varying fields f(t) and g(t) are superimposed onto
monochromatic components, as discussed earlier, which
prepare

~ y ). It seems likely that this method of prepara-
tion is unnecessarily restrictive; for example, following
Carroll and Hioe [11], state ~y ) might be produced by
allowing the leading edge of a ~2)-~3) pulse to exceed that
of a

~
I )-~3) pulse until after

~ y ) is formed.
This work substantially modifies our understanding of

population trapping in dense media. We have shown that
electromagnetically induced transparency in dense media
may not be considered as a Beer's law superposition of
the single atom response. One application may be in

transmission of pulsed radiation through lossy or ionizing
media. Here, nonlinear optical techniques could be used
to prepare matched pulses at the two transition frequen-

cies. Amplitude and phase distortion of these pulses, as
well as distortion produced by the media, will tend to be
removed by the phenomena described here.
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