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‘We present a quantum theory of feedback in which the homodyne photocurrent alters the dynamics
of the source cavity. To the nonlinear stochastic (Ito) evolution of the conditioned system state we
add a feedback term linear in the instantaneous stochastic (Stratonovich) photocurrent. Averaging
over the photocurrent gives a feedback master equation which has the desired driftlike term, plus a
diffusionlike term. We apply the model to phase locking a regularly pumped laser, and show that
under ideal conditions the noise spectra of the output light exhibit perfect squeezing on resonance.

PACS numbers: 42.50.Lc, 03.65.Bz, 42.50.Dv, 42.60.Mi

Electrical engineers have long used feedback to prevent
noise from rendering a system unstable, and these tech-
niques are now put to use in optical systems, for example,
to stabilize the phase or intensity of a laser oscillator. In
the past decade, the noise control in optical systems has
entered the quantum domain, attenuating noise as far
as possible within the constraints of Heisenberg’s uncer-
tainty principle. This has generally been achieved not
by feedback, but by exploiting the intrinsic nonlineari-
ties of certain media. In this way, a variety of optical
states have been produced which lead to sub-shot-noise
photocurrents [1]. Until recently [2], the noise reducing
capabilities of feedback in quantum optical systems have
not been explored. In this Letter we rigorously derive a
master equation which describes quantum-limited feed-
back of a homodyne current to control an optical cavity.

Feedback entails a measurement step which necessar-
ily introduces noise into the feedback process even if all
classical noise sources are eliminated. In our theory, this
is manifest as a diffusionlike term in the master equa-
tion. This suggests a possible fluctuation-feedback the-
orem, analogous to the fluctuation-dissipation theorem.
The desired feedback term is a nonlinear, nonunitary,
driftlike term. We show that if the action of the feed-
back is classical (e.g., driving, detuning, or damping), the
feedback terms cannot produce nonclassical field states.
However, unlike previous treatments of quantum-limited
feedback in traveling waves [3], feedback control of cav-
ity systems enables the feedback to be nonclassical, or to
be combined with nonlinear intracavity elements. This
opens up the possibility of new types of nonlinear and
nonclassical field evolution. In this Letter we show that
phase-locking feedback of a regularly pumped laser en-
ables perfect squeezing in the free output of the laser.

Consider an optical cavity with Liouville superopera-
tor £ which includes damping to the external continuum
of vacuum modes via an output mirror. We measure time
in inverse units of the cavity linewidth so that the damp-
ing master equation is p = apa’ — 2a'ap — 1pa’a, where
p is the state matrix. This p represents our knowledge
of the state of the system given that we know nothing
of the state of the bath, which is traced over in deriving

the master equation. However, in practice it is not un-
common to have knowledge of the state of the bath from
measurements on the field leaving the cavity. In this case,
the system must be described by a conditioned state ma-
trix p., conditioned on the results of the measurement.
The basic process by which this conditioned state is con-
structed is that, if b is the annihilation operator for the
output field at a photodetector, then if a photodetection
takes place, the conditioned state of the system changes
via pe(tt) = bpc(t)b'/P.(t) where P.(t) = Tr[bp.(t)b'] is
the probability per unit time for the photodetection to
occur. For simple photodetection, this leads to quantum
jumps in the conditioned system state [4], but more com-
plicated measurement schemes lead to different behavior.
For example, homodyne measurements of the X quadra-
ture of the output field yields the following photocurrent

[5]:
Le(t) = n{a + al)c(t) + v/E(2), (1)

where 7 is the efficiency of the detection system, £(¢) is
real delta-correlated noise [6] arising from the local os-
cillator, and {(a + a').(t) = Tr[(a + at)p.(t)]. We have
shown previously [5] that the conditioned system state
then obeys the following Ito stochastic, nonlinear equa-
tion:

P =L+ VTE® Hpe, ©)
where H is defined by

Hp = ap + pa’ — Tr(ap + pal)p. (3)

If we ignore the result of the measurements by averaging
over £(t), then Eq. (2) reduces to the standard master
equation for the ensemble average p = F[p.].

Now consider instantaneously feeding back the homo-
dyne photocurrent to change the system dynamics. It is
reasonable to assume that the strength of the feedback is
linear in the photocurrent, since higher powers of (1) are
ill defined because of the white noise term. The feedback
term can thus be written

[belss = [{a +al)e(t) + £C) /v Kpc, (4)
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where K is an arbitrary Liouville superoperator with the
proviso that in general —K must also be a valid Liou-
ville superoperator. The question now arises of whether
to treat Eq. (4) as an Ito or Stratonovich equation [6].
Equation (2) was derived using the Ito stochastic calcu-
lus, but Eq. (4) has been postulated and so its inter-
pretation is open. We will show that the only consistent
interpretation of (4) is as a Stratonovich equation. To
reconcile this with the Ito equation (2), we first put the
latter into Stratonovich form:

P = [L+ vnE(OH — 57H°] pe. (5)
Adding Eq. (4) gives
P =L —inH? + (a+ah)e()K
+TED(H + 1K) e (6)

Converting this back to Ito form and using the definition
(3) of H gives

. 1
Pg) = Lp. + K(apc + pcaT) + %K?pc
+ VIE@)(H + 17 K) pe. (7

Here we have used the superoperator ordering KH, rather
than a symmetric product because this is necessary to
give a trace preserving master equation, as will be seen
shortly. This procedure can be justified by considering
time-delayed feedback, and then letting the time delay
go to zero. The principle advantage of the Ito calculus
is that £(t) is independent of p.(t), so that we can eas-
ily take the ensemble average of Eq. (7) to obtain the
following master equation for the nonconditioned state
matrix p = E[p.]:

1
p=Lp+Klap+pa®) + 2—77}C2p. (8)

This is our general master equation for homodyne-
mediated feedback.

An important point to note about Eq. (8) is that it is
linear. That is to say, terms like (a + a').(t)p.(t) have
been eliminated. This is essential since the fundamentals
of probability theory imply that the generator of motion
for any complete statistical representation of a system
must be linear [7]. This fact allows us to accept Eq.
(8) and to reject the Ito interpretation of Eq. (4) which
would lead to the following equation:

PO = [L+ VRED(H +171K) + (a+ al)e(H)K] pe.
9)

By inspection, this equation would not give a valid mas-
ter equation if one were to attempt to average over £(t).
This result is not surprising from physical intuition, be-
cause the necessary delay in any feedback loop would
invalidate the Ito assumption that the noise in the feed-
back current is independent of the state of the system at
the time at which it takes effect.

Equation (8) shares much in common with a feedback
master equation derived from the idealized continuous
position measurement model of Caves and Milburn [8].
The first additional term in Eq. (8) is the desired feed-
back effect, which is nonlinear and nonunitary. The sec-
ond is a diffusion term due to the inevitable introduc-
tion of noise by a quantum-limited feedback loop. The
lower the efficiency of the detecting system, the larger
this diffusion term becomes, as expected. Another im-
portant point to note about Eq. (8) is that, if the feed-
back superoperator K corresponds to a “classical” pro-
cess (driving, detuning, or damping), then the two feed-
back terms give a true Fokker-Planck equation for the
Glauber-Sudarshan P function. This has the significance
that, unless the superoperator £ has the ability to pro-
duce nonclassical states, then adding feedback will not
reduce noise below the classical limit.

As an example, we now apply the above formalism to
a simple system, a single mode laser. It can be shown
[9,10] that an ideal laser with a Poissonian pump rate of
1> 1 rapidly evolves to a mixture of coherent states of
amplitude ,/fz, and thereafter its dynamics is described
excellently by the following master equation:

,__1+1/
p= i

[Cﬁa, [aTa,p]], (10)

where v > 0 represents the excess phase noise in the
laser above the quantum limit. This master equation
obviously describes classical phase diffusion, causing an
initially coherent state to become eventually a mixture
over all phases. To prevent this, the laser can be phase-
locked to a local oscillator of (relatively) fixed phase.
This is achieved by changing the frequency of the cav-
ity by feeding back a homodyne photocurrent just as de-
scribed above. To lock the phase at /2, a positive X ho-
modyne current should result in a decreased frequency.
To justify the assumption of instantaneous feedback, the
time delay would have to be much less than the inverse of
the cavity linewidth (that is, submicrosecond). In prac-
tice this could be achieved by changing the optical path
length of the cavity, perhaps by an electro-optic modu-
lator. For small changes in the path length, this is well
modeled by the Stratonovich equation (4) with the feed-
back superoperator defined by

Kp = ¢2\*/ﬁ[afa,p1. (11)

Substituting this into Eq. (9) gives the feedback mas-
ter equation

. 14+v+A2/2n ¥ ¥ A
p=——"""""1lala,[ata,p]] +i=——=[a'a,ap + pal].
v [a'a, [a'a, pl] + 577 [ala, ap + pa]
(12)
This equation can be solved using the Glauber-Sudarshan
P(a) function. Since the phase space is restricted to the
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one-dimensional manifold {a : @ = \/e*?,0 < ¢ < 27},
we need to only consider P(¢), which obeys

1 8% 1+v+2A2%/2p

e ]P<¢>.

(13)

The stationary solution will obviously have a phase vari-
ance of order 1/u. Since this is much less than 1, we are
justified in ignoring the periodicity of ¢ and linearizing
Eq. (13) to obtain the stationary solution

_ 1 (¢ —7/2)*
P(¢) = \/—ZW——U';GXP [——2%'—] , (14)
where
_14+v+2X?%/2n
Vo= —am (15)

is the normally ordered phase variance. A truer repre-
sentation of the phase uncertainty is the symmetrically
ordered phase variance, Vg, found from the Wigner func-
tion. In this case we simply add the Wigner phase vari-
ance of a large amplitude coherent state to get Vy =
Uy + 1/4u. Thus we see that the stationary state of a
phase-stabilized Poissonian laser does not approach a co-
herent state. Nevertheless, the extra phase uncertainty
above that of a coherent state is still on a quantum scale.

Perhaps of more interest is the phase stabilization of
a sub-Poissonian pumped laser [11], in which the super-
operator £ is nonclassical. It turns out [10] that the
regularity of the pump does not affect the rate of phase
diffusion. Thus, the true phase variance is

L4+ v+ A4+ 22%/2n

Ve 4u

(16)

as before, and the photon number variance is
Vo= (1-r/2)u, (17)

where 7 is a measure of the regularity of the pump, equal
to 0 for a Poissonian pump and 1 for a completely regular
pump. Under ideal conditions (v = 0,17 = 1), we find a
minimum of Vj = (1 +v/2)/4p when X = v/2. Assuming
r = 1, the squeezed state has a Wigner phase-space area
of

[VoValY/? = [(1 + V2)/8]Y/? =~ 0.5493. (18)

This is less than 10% above the minimum of 0.5 required
by Heisenberg’s uncertainty relations.

The result for the output spectrum is even better. It
must be remembered that the fraction 8 of emitted light
available as an output from the system is at most 1 — 7,
because the fraction of emitted light used in the feedback
loop is at least 5. Fluctuations in the output light are
best represented by the noise spectra for the quadratures
% (which corresponds to phase in the limit of high photon
numbers as here) and § (which similarly corresponds to
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intensity). It can be shown that the zero frequency (on
resonance) noise spectrum for X is

Sz (0) =1+ 6[1/n+2(1 +v)/N%, (19)

where the spectrum is normalized to equal 1 at high fre-

quencies. Meanwhile, the noise spectrum for y has a
minimum of
Sy(0) =1 —6r, (20)

which exhibits squeezing for » > 0. Assuming r = 1,
0 =1-mn, and A — o0, we find the following simple
expressions for optimum output noise reduction:

S:(0)=1/n , Sy(o) =7 (21)

These results are characteristic of perfect squeezing on
resonance in that (i) S;(0)Sy(0) = 1, a minimum uncer-
tainty relation; and (ii) arbitrary squeezing is obtainable
in the y quadrature, with S,(0) — 0 as 7 — 0. In the
other limit (n — 1), the laser output has the noise char-
acteristics of a coherent state simply because the fraction
of output light is almost zero.

It must be emphasized that the feedback is not re-
sponsible for the nonclassicality of the light produced by
the phase-locked regularly pumped laser. As we have
shown, classical feedback cannot produce nonclassical
light. What the feedback does achieve is to change the
nonclassical laser steady state from a sub-Poissonian (but
far from minimum uncertainty) state, to an almost min-
imum uncertainty quadrature squeezed state. This is
achieved by forcing the laser phase (which is completely
undefined in a free running laser) to a definite value
within a small uncertainty. Without feedback, the laser
output has a sub-shot-noise intensity spectrum, but the
spectrum of any quadrature is greatly super-shot-noise.
Locking the phase to 7/2 causes the nonclassical inten-
sity noise reduction to become nonclassical ¥ quadrature
noise reduction. In the ideal case of perfect photode-
tection, the on-resonance noise in the other quadrature
(Xx) may be as small as possible given Heisenberg’s uncer-
tainty relations. In this sense, the phase-locking feedback
makes the light squeezed, even though it does not pro-
duce the nonclassicality.

In conclusion, we have solved the problem of quantum-
limited optical cavity feedback for the case of instanta-
neous feedback of the homodyne photocurrent. The ex-
act master equation for the feedback-controlled cavity
mode exhibits a novel non-Hermitian driftlike term, and
a diffusive term due to quantum noise inherent in the de-
tection process. These terms are such that classical feed-
back mechanisms (altering the cavity driving, detuning
or damping) cannot produce nonclassical states. How-
ever, the possibilities for nonclassical feedback or feed-
back coupled to nonclassical intracavity dynamics are of
great interest. As a simple application of the latter, we
have shown that using feedback to lock the phase of a reg-
ularly pumped laser produces perfect squeezing on reso-
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nance in the output light. This work will be expanded
upon in future publications.
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