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Wave-Action Conservation for Pseudo-Hermitian Fields
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The linearized Vlasov-Maxwell systexn and ideal magnetohydrodynamics are examples of systems
with a pseudo-Hermitian structure with respect to an indefinite inner product on the space of complex
representations of real fields [J. Larsson, Phys. Rev. Lett. 66, 1466 (1991)]. This structure leads
to variational principles, whose variation with respect to local wave phase yields new wave-action
conservation laws, which generalize previous eikonal versions.

PACS numbers: 03.40,Kf, 52.35.Bj, 52.35.Hr, 52.35.Lv

For some years, the law of wave-action conservation
for classical fields has been based on the eikonat approx-
imation, which requires that wave amplitudes are slowly
varying spatially on the scale of the wave phase [1—3]. Yet
there are important situations in physics where this ap-
proximation is clearly invalid, and where intuition leads
one still to expect action conservation. The need for
such a conservation law is especially important for wave
propagation in a medium with weak time dependence,
where wave-energy conservation is lost. Some common
situations where eikonality fails are the following: (1)
Waves propagate across discontinuities, undergoing re-
fraction and partial reflection; (2) in plasma kinetic mod-
els, wave action is transferred between collective and ki-
netic modes, often over a singular layer [4—6]; and (3)
waves are scattered as they propagate through a turbu-
lent medium [7].

Recently Kull, Berk, and Morrison [8] presented a
noneikonal formulation of wave-action conservation for a
field whose evolution is governed by a Hermitian opera-
tor. This requirement of Hermiticity restricts its applica-
bility by omitting eÃects such as wave-particle resonance
in Vlasov theory. However, there is an important class of
systems whose wave operators are pseudo Hermitian [9], -

in the sense that Hermiticity is defined with respect to
an indefinite-metric inner product [10].

Several important dynamical systems have a Hamil-
tonian structure in terms of a generalized (noncanoni-
cal) Poisson bracket [ll]. The best-known examples in

plasma physics are ideal magnetohydrodynamics (MHD)

[12] and the Vlasov-Maxwell model of collisionless plasma
dynamics [13]. In the process of linearization, the first-
order fields represent perturbations from an arbitrary
(possibly time-dependent) reference state. These fields
can be expressed in terms of generating functions; in lin-
earized ideal MHD theory, for example, the linear fields

(pi, ui, pi, Bi) are expressed in terms of the fluid dis-
placement g(x, t) [e.g. , pi = —V' (po(')].

For the Vlasov-Maxwell system, Larsson [9] devel-
oped the linearization in terms of S(z; t), a scalar gen-
erating function for canonical transformations on six-
dimensional phase space z =— (r, p =— mv). The lin-
ear perturbation of the Vlasov distribution, fi, is gen-
erated jointly by S and Ai(x, t) (the linearized vector
potential) acting on the reference distribution fo(z;t):
fi = (S& fo $ + (e/c) Ai (r, t) 0fo/Op. This represents
dynamically accessible perturbations [14—16]. Larsson
showed that, by complexifying the linear fields, and by
defining an indefinite-metric inner product (with zero
norm for real fields), the time-evolution operator was
indeed Hermitian with respect to this unconventional
inner product. Upon our recognition that this pseudo-
Hermiticity was a general property of linearized Hamil-
tonian systems [17], one of us developed the appropriate
formulation for linearized MHD [18].

An immediate consequence of the pseudo-Hermitian
formulation is its associated quadratic variationat prin-
cipte. In this paper we show how to use this principle to
construct the wave-action continuity equation, by consid-
ering an arbitrary nonuniform phase shift of the complex-
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ified wave field. The three examples we treat are the fol-
lowing: (1) ideal MHD, of which fluid dynamics is a spe-
cial case; {2)cold multifluid electrodynamics, which also
has a noncanonical Hamiltonian structure; and (3) the
Vlasov-Maxwell system, of which the Vlasov-Coulomb
system is a special case. In each case, the reference state
(about which linearization is taken) is allowed to be time
dependent.

The expressions obtained for the wave-action density
and Hux are local quadratic functions of the complezified
wave fields [see, e.g. , Eqs. {4), (8), and (15)]. Com-
plex representations have been common for real linear
fields, but have usually been considered merely an al-
gebraic convenience. Here, however, complexification is
essential, as these expressions vanish identically for real
fields. [One accepted algorithm for complexification is
Gabor's analytic signal [19): For any real function of time
f(t), define the analytic f~(t) —= Jo (eke/~) e ' 'f(~),
with f(w) = j dt e+ f(t) The . inverse is simply
f(t) = «f~(t) ]

Our derivation of the wave-action continuity equation

B,J(x;t)+V' J(x;t) =0, (1)
for the action density J and the action Hux density J, is
based on a variational functional A for the complexified
wave field. Because A is stationary for all infinitesimal
variations of the field about a solution, it is stationary for
the set of restricted variations representing infinitesimal

nonuniform phase shifts. This is the generahzation of the
space-time variation of the eikonal phase in the standard
derivations for eikonal wave fields. Formally, (1) states
that the functional derivative of A with respect to the
wave phase vanishes.

For each of the three examples presented in this paper,
we have explicitly evaluated BJ/Bt by using (4), (8), or
(15), the evolution equations for an arbitrary reference
state, and the evolution equations for the wave field. In
each case, we have rigorously verified that Eq. (1) holds
with J given by (5), (9), or (16), respectively, with. no
approximation.

We illustrate the method by considering first the case
of ideal single-Huid MHD, where the wave field is repre-
sented by the Huid displacement g(x, t). The variational
functional, yielding the standard evolution equation for g
[but allowing for time-dependent reference state Bo(x, t),
po(x, t), uo(x, t), po(x, t)], is [18,20]

1
A(4') = — d'~(pol4I'+4" [& K(4')])

in terms of the Hermitian operator V . K, where

K(4) = —(pi+Bo 9) ~+BoQ+QBo+Cpouo,

g(f)—:V x (g x Bo)/4~ =—Bi/4n pi(g) =——g V'po—
ppoV $, g = B$/Bt + uo . V'g. In (2), we take the
v«iation of A for g(x, t) ~ g(x, t) expin(x, t), with a
infinitesimal and arbitrary; thus $(' = i~/, $g' = —io,g'.
After some integration by parts (letting a have compact
support), and using the Hermiticity of K, we find

bA = d xo.(x, t)[BJ/Bt+ V'. J],

with the actioil density

J(x;t):—Im [po(x, t)f (x, t) g(x, t)],

and the action Hux density

J(x; t) = J~ 1(x;t) + uo(x, t)J(x; t),

J~ ~{x;t)—:Im (g* x Bo) x Q —g'pi
—(0 x C. io)Bo/2c

is the action Hux density in the local rest frame, and uo J
is the convective contribution. Because bA = 0 for all o.,
we obtain the desired action continuity equation (1).

The expressions (4) and (5) have the following proper-
ties: (a) For real g, they vaiush identically; (b) because
g is the convective time derivative, J is invariant un-
der Galilean frame changes; and (c) in the eikonal limit,
g ~ —i(cu —k uo)g J(x, t) ~ (~ —k uo)polglz, and
J = Jx{local group velocity), the standard results in
MHD [2].

When the magnetic terms are deleted from the MHD
formulas, one obtains results appropriate for Huid dy-
namics. They can also be generalized in several direc-
tions: to rotating frames [21], to dielectric Huids, and
to special-relativistic [22, 23] and general-relativistic [24]
Buids.

We next consider ideal cold multispecies electrodynam-
ics [25]. The first-order fields are (Q» Pi, Ai), where g,
denotes the displacement for species s, and (Pi, Ai) are
the first-order electromagnetic potentials. The reference
state is represented by the (time-dependent) fields: no,
uo, Eo, Bo. The variational functional can be derived
from the cold-Huid limit of the Low Lagrangian [26]:

A(gi, Ai, g, ) = p- o
Sm 2

+Re d x $ noe, (g,'x Q, . Bo/2c+ zg', . V'Eo —(V'Bo) x uo/c

+ Q,
*.(Ei + uo x Bi/c)),
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with Ei = —V'Pi —c OAi/Ot, and Bi =—V' x Ai. By the same method as for MHD, using the same a. for (ti, Ai,
(', (6/i = ic(.Pi, bAi ——inAi, 6g, = iag, },we derive the action density

S

J(x;C)I—:Im(A( Ee/4nc+ ) 'Be xe; x (, —) ne(; (m, 4, + —'A, ) )S S

and the action Hux density

S

J(x; I)—:Im
~

(II(Re+A| x B|)/4x+) (cene g; m, 4, +—*A| + —'Be C x4, —e,6; 4& ——A&) )C

In the eikonal limit Ai =—A(x, t)expiO(x, t), the
species displacements (', (x, t) can be algebraically ex-
pressed in terms of the local linear electromagnetic field.
Then the action density reduces (in the radiation gauge
(//(i = 0) to the standard expression [3]

J = (OD/Ocu)(Ai~,

J = J x (local group velocity),

(12)

J = A* (OD/Ou)) . A,

and the action Hux density to

J = —A* . (OD/Ok) A,

where D(k, w; x, t) is the local cold plasm-a dispersion ten-
sor (allowing for nonzero flow uo). On introducing the
local polarization by A = e(x, t)A(x, t), these reduce fur-
ther to the standard forms

where D—:e D e. Also [3], in the eikonal limit, the
wave-energy density is ~J, and the wave-momentum den-
sity is kJ.

Finally we turn to the Vlasov-Maxwell model of colli-
sionless plasma dynamics. Larsson [27] has recently de-
rived the variational functional for the Vlasov-Coulomb
model from the Low Lagrangian [26]. The generaliza-
tion to the Vlasov-Maxwell model is straightforward; the
first-order fields are the generating function S(z; t) and
the electromagnetic potentials Pi(2') and Ai(z). The
variational functional is

A(Ai, (t(i, S) —= d'& (IEil' —IBil') /8~ —— «d'z fo(» t) e'IAil' j~c'+ «(S* S —2e(4'i —v Ai jc))

where

OS e OAo OS

ho(z, t) —= p /2m+ ego(r, t),

summation over species is implicit, and the noncanonical Poisson bracket [28] is

Of Og Bf Og e Of Og
OI' Op Op Ol c Op Op

in terms of the possibly time-dependent reference field Bo.
We proceed as before and obtain for the action density

1J(x;t) = Irn Ai Ei/4zc+ — d zti (x —r) (S*,fo}S,
2

and the action Hux density is

J(x;t) —= Im ((t(iEi + Ai x Bi)/4z+ — d zan( (x —r) (S*,fo)v —e((ti —v . Ai/c) S,
2 Bp

(i6)

where we have used S = e(Pi —v Ai/c), which follows from the full variation. We obtain the expressions for J and
J for the linearized Vlasov-Coulomb model by setting Aq ——0.

523



VoLUME 70, NumBER 5 P H YSICAL REVI EW LETTERS l FEHRUARV 1993

3ust as for the cold-Quid model, one can take the
eikonal limit, and then express only the nonresonant part
of S in terms of the linear electromagnetic field. The local
dispersion tensor is then Hermitian (in the conventional
sense), while the resonant part of S appears explicitly.
This formulation is useful in treating linear conversion
between collective and ballistic modes [4—6].

In conclusion, we have derived wave-action conserva-
tion laws for several linear-wave systems, in terms of com-
plex representations of the wave fields, which evolve by
pseudo-Hermitian operators. The general procedure is
as follows: From the variational functional A(1'*, g) in
terms of the complexifled field Q, we perform the re
stricted variation 6'Q = inQ and hg* = inQ—*, and
obtain the functional AA(Q*, @;o)—:A( —io.Q*, @) +
A(Q*, +io.g). By construction, any terms in A which
do not involve space-time derivatives on g will not con-
tribute to the wave-action conservation law. Then the
action density J(x, t) is the functional derivative of AA
with respect to Oo, (x, t)/Ot, while the flux 3 is the func-
tional derivative with respect to Vo..

Because these wave-action conservation laws do not re-
quire eikonality, one can expect many applications, such
as those listed in the opening paragraph.

We are indebted to 3. Larsson, R. Littlejohn, H. Ye,
and T. F'la for very helpful discussions. This work was
supported by the U.S. Department of Energy under Con-
tract No. DE-AC03-76SF00098.
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