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New Method for Calculating Binding Energies in Quantum Mechanics
and Quantum Field Theories
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We propose a systematic perturbative method for calculating the binding energy of threshold
bound states —states which exist for arbitrary small coupling. The starting point is a (regularized)
free theory. Explicit calculations are performed for quantum mechanics with arbitrary short-range
potential in 1D and various (1+ 1)-dimensional quantum field theories. We check the method by
comparing the results with exact formulas available in solvable models.
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ThreshoId bound states. —The study of bound state
spectra is one of the most interesting and diKcult prob-
lems in quantum mechanics and especially in quantum
field theory. The main difhculty is that the problem
is essentially "nonperturbative. " Other quantities, like
scattering amplitudes, are usually calculated perturba-
tively for weak coupling. However, the study of even the
simplest bound states, like the hydrogen atom, requires
the use of special methods.

In quantum mechanics in order to study a potential
it is approximated by one of the solvable potentials, i.e. ,
those for which the spectrum is known exactly. The devi-
ations are then taken into account systematically in per-
turbation theory. In quantum field theory the available
approximation schemes [1] are usually very complicated
and by no means systematic Even for weakly coupled
theories like @ED the calculation should be considered an
"art" [1). The standard wisdom in quantum mechanics
as well as quantum field theory is that the perturbation
theory around free theory is inapplicable for the study
of bound states [2]. If all the interactions are considered
a small perturbation, to any finite order in perturbation
theory there are no poles in the scattering matrix. It
is easy to understand the reason behind this conclusion
by considering the bound state spectrum of a square-well
potential in three dimensions. As the depth of the well
decreases the bound states are "swallowed" one by one by
the continuum. Beyond some critical depth there are no
bound states left in the spectrum. Clearly, weak coupling
perturbation theory has nothing to do with such bound
states. There is, however, a class of bound states which

exist for any value of the coupling constant no matter how
small. An example of such "threshold" bound states is

2
the hydrogen atom E„= 2„,. When the fine structure
constant n ~ 0, the spectrum becomes denser but no
bound state is lost in the continuum. For such bound
states the above conclusion is not warranted.

Threshold bound states happen to be quite abundant
in quantum mechanics and quantum field theory. They
include the lowest bound state of essentially any short-
range potential in 1D and 2D quantum mechanics and
in 1+1 and 2+1 quantum field theories, all the bound
states of @ED, and even hadrons in lCD. Perturbation
theory does "know" about such states. One encounters
threshold or on-shell infrared singularities in scattering
amplitudes when momenta approach the threshold.

In this Letter we reconsider the use of weak coupling
perturbation theory [3] for the calculation of binding en-
ergies of a large class of such states.

First, we limit ourselves to the case when the binding
energy E not only approaches zero as the coupling n ~ 0
but is also an analytic function of a. General theorems
(and simply experience with exactly solvable models) tell
us that this class includes (i) the lowest bound state of all
the potentials in 1D that decay at large distances faster
than a power, (ii) most of the bound states for potentials
in 3D that asymptotically fall as 1/r at large distances,
and (iii) many bound states in quantum field theories
(QFT) in 1+1 dimensions.

For short-range potentials nv(x) in 1D Simon proved
that the energy of the lowest bound state is analytic in
n [4] and derived the following expansion:

2

E(n) = ——a V(x)
1 2 3
2

V(x)l* —&IV(y) V(z) + O(Q, ')

Well-known solvable examples include [5] the 6 potential V(x) = —n6(x) for which Eo = —n /2, the square well

V(x) = —a0(a —xl) (Eo = —2man2), and the Poschel-Teller potential V(x) = —,,h( ), [Eo ——— + O(o.s)]. For
3D potentials decreasing as 1/r at large distances, most bound states are threshold and analytic. During the last
decade since the solution of the Thirring model many exact results for so-called solvable (1+1)-dimensional quantum
Beld theories became available. When one looks at the coupling dependence of the threshold bound states in these mod-
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els the analyticity becomes evident. For example, in the
Thirring model

& = @(iP —m)4+ 2g(M&PV)' (2)

the mass of the bound state meson (the "sine-Gordon"
particle) is

7t
Mq ——2Mf sin

l

&2(1+ .),
2 4g2

=Mf 2 —g

4 l&OI~IS». . I'
2~ Eo —E„

where Mf is the elementary fermion mass. So the case
of analytic threshold bound states is by no means patho-
logical or exceptional.

For these states the situation is rather peculiar. We
do know, on one hand, that the binding energy has an
(even convergent) expansion in the coupling o., but, on
the other hand, no apparent poles appear in the expan-
sion of the S matrix to any finite order in perturbation
theory. A natural question arises: Why not calculate
binding energies directly? One does not have to calculate
the scattering matrix first and then look for poles in it.
These two operations are nonperturbative. We show that
the direct perturbation theory for bound states around
the free theory (done with some care) does, in fact, work.

To demonstrate how the procedure works, we start
with a somewhat detailed calculation in 1D quantum me-

chanics (for arbitrary short-range potential). Then two

(1 + 1)-dimensional quantum field theories are consid-
ered up to third order in o.: the Thirring model and the
polynomial interaction. The Thirring model is a solvable
one, so we can confront the results against known binding
energies.

Quantum mechanics .—A straightforward calculation
of binding energy in standard perturbation theory start-
ing from the free theory H = —

& , is not possible due
to infrared on-shell divergencies. We therefore first reg-
ularize the infrared (on-shell) divergencies by adding a
solvable potential PV„s(x) which has similar threshold
bound state structure. The regularized theory is then
perturbed by the interaction nv(x) to some finite order
in n. At the end of the calculation the regulating po-
tential is taken to zero (i.e, we take the limit when its
coefficient P goes to zero). We choose V„s(x) = b(x). —
The spectrum of the unperturbed regularized Hamilto-
nian Hp(P) consists of one bound state ~0) = ~e
and the continuum, ~»», ,„=„,.& [p cos(px) —P sin(p~x~)]

and ~»»o~~ = csin(px) . The corresponding energies
2

are Eo ———|z and E„= ~&. The erst-order correc-
tion to the energy is [we take the symmetric potential
V(x) = V(—x)]

Eg(P) = &0~V~0) = nP dxv(x)e ~'*l:0. (4)

It turns out that the limit P ~ 0 is conveniently taken
by expanding in P. The second-order correction is given
b,

2pn2
e P(l*l+lul) p cos(px) cos(py) —pp sin(lxl + lyl) + p sin(px) sin(py)] .

Vx Vy
(p2 + p2)2

In addition to factors of P coming from the bound state normalization there are factors of 1/P coming from integration
over momenta around the p = 0 threshold. In other regions of the integration one is allowed to expand the integrand
in P. Performing the p integration we get a finite result,

AE2 =—
7t

p (cos[p(x + y)] + cos[p(x —y)]) p p a
(p2 + p2)2 2. V(x)

-2
(6)

&OIVIS»&» IVIC&&glVIO)

„,(27r)2 (Ep —E„)(Ep —Eq)
—= a (Es —Es)

The expressions for Es and E&~ have the following Laurent expansion in P:

2m- (Ep —E )2

which coincides with the first term in the exact expansion of Simon Eq. (1). Analogously the third-order term is

1
@CL

4 V(x) — V(x)
x

- 2

lxlV(x) — V(*) V(x) lx —ylV(y) + O(P)

Eb
3 4p

v(x) —— (lxl + lyl) v(x) v(y) + o(p)
»V
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We observe that the I/P term in Es cancels that in

E3 The finite contribution 2cu(p)4(p) —P
M

@(k) = E@(p) .

lim LE3 ———e
p~p v(~) v(*)l~ —wlv(w) (9)

again agrees with the exact formula of Simon.
Our choice of regulator is quite arbitrary. One could

perform the same calculation with any other attractive
short-range potential. The only requirement is that the
regularized Hamiltonian Ho(P) has a bound state with
the same quantum numbers as the one for which the
binding energy is calculated. The regulator "fixes" the
unperturbed state roughly at the location of the bound
state. The calculation itself is much simpler than that in
standard perturbation theory around a nontrivial inter-
action Hamiltonian. Although we are expanding around
a nontrivial regularized model, the use of the Laurent
expansion simplifies the calculation of integrals consider-
ably.

Quantum field theory In.—order to be able to compare
with a known spectrum we start with a solvable QFT:
the Thirring model, Eq. (2). For weak coupling it is
known that there is only one fermion-antifermion thresh-
old bound state with energy given in Eq. (3) [6]. Now we
have to regularize the free theory by adding interaction.
Unlike the situation in quantum mechanics, in relativis-
tic quantum field theory a covariant interaction term like

(QQ)
2 necessarily mixes sectors of the Hilbert with a dif-

ferent number of particles. The regularized Hamiltonian

Ho(P) then becomes a nontrivial quantum field theory
and is useless for our purposes. However, we have already
seen that the only purpose of introducing a regulator is to
"fix" the mesonic bound state. Therefore one can choose
as a regulator an interaction which is restricted to the
two-particle sector only. This, of course, breaks Lorentz
invariance which is restored in the P ~ 0 limit.

The simplest attractive interaction of this kind is the
contact one:

Hp(P) = ) u)(p)ata„

So essentially we get a b potential with a relativistic dis-
persion relation. Since the integral in this equation di-
verges, we introduced a cutoff M. The effect of introduc-
ing the cutoff is that the 6 interaction is smeared. The
divergence can be absorbed in the redefinition of the cou-
pling P, i.e. , P = i &~~&z (in the following we drop the
tilde).

Solving the equation one finds one bound state whose
wave function is

+(p)b =
2ui(p) —2m + d

where 6 the binding energy is defined by

(12)

0p 1

M 2vr 2~(p) —2m+ 4 ' (13)

AEi ——(@i,!v!4i) = 4i, (p) 4 g(&)(p, -plvl

= o/3+ &(P')

The first nonvanishing contribution appears in second or-
der. To this order one should, in principle, take into ac-
count all the virtual transitions from the two-particle sec-
tor to the two- (continuum as well as bound state), four-,
and six-particle sectors: LE2 ——Eq p 2 + E2 2 g +
E2 4 2 + E2 6 g. The "elastic" contribution is

2
It has an expansion 4 = ~4[1 —~ + O(P )]. The nor-
malization constant N has the following expansion: N =
~4 [1 —& + 0(Pz)]. The scattering solutions are

@(p)~ = 2~6(p —k)+
2Pk

[2~(p) —2~(k) + ie] [2k —i@~(k)]
'

(14)

The leading-order contribution in V = g/2(gp~@) van-
ishes:

+~& ) a„,ap, ap, a
p1~J 2~23

(10) dp I(+~IVI~(p). ) I'
2vr Ep —2ur(p)

(16)

where cu(p) = gpz+ mz and 'P is a projection opera-
tor on the two-particle sector. This Hamiltonian can be
easily diagonalized. Acting with Hamiltonian Eq. (10)
on two-particle states in the center-of-mass frame of ref-
erence l@i,):—f „b(P)4'i,(p)at, a~t, !0) (p = "'~"' and
P = pi +pz) one obtains the following Schrodinger equa-
tion:

2

Eg~2~2 ———NX I - —g (17)

The factors of P coming from the bound state normal-
ization will be compensated by 1/P terms coming from
the integration region close to the threshold (p = 4m ).
The remaining 2 —+ 2 —+ 2 contributions are

X= dp 2 =2= —+ o(p)
n ~(p)[u)(p) —2m+ A] P

dp 16@ 2 3
~ ~(p)&[4p2 + P&~(p)2][2~(p) 2m+ /] P
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Equation (17) coincides with the first term in the expansion of the exact formula for the binding energy of the lowest
bound state in the Thirring model, Eq. (3). It is easy to see, by simply counting powers of P, that only transitions
within the two-particle sector survive in the limit P ~ 0. The reason for that is the following. The integrals in the
other contributions, for example,

E2 4 ~( )
[(@bl&lpi, s2, ps) s4) ~'

(2'ir)' &o —~(pi) —~(&2) —io(&s) —~(&4)
' (19)

have no singularities so that no factor of 1/P can be pro-
duced. This is due to the fact that there is a finite energy
gap for these virtual processes. The contribution from
these processes will therefore vanish in the limit P —+ 0.

In the third order there are still no contributions to
processes connecting the two-particle sector with higher
sectors [7]. Performing the calculation we get

3
4 ~ o, 3'=

8
+ a~ (20)

which again agrees with Eq. (3).
A similar calculation for the (nonsolvable) polynomial

interaction

2 = 20„(50"p—2m p + Ap —qp

gives

gg 27g
M2 =2M ——,+,+O(g'),

(21)

(22)

where g is the renormalized four-coupling. The G.rst term
agrees with previous calculations of [8] while the second
term is new. For comparison we include the expansion
of the variational calculation of the two-particle bound
state of Ref. [9],

9g2 27 f'2 l gs
M, =2M —,+ —

~

—+1i4M' 8 qvr p M'

The gs coefficient is 20% off.
Conclusion. —The method proposed here is systematic

and straightforward. All the integrals involved can be
found in tables, so that no numerical calculation is re-
quired. In contrast, the Bethe-Salpeter scheme starts by
replacing the leading-order Bethe-Salpeter equation by a
solvable (usually nonrelativistic) integral equation. One
then performs a double "expansion. " The kernel is cor-
rected perturbatively and in addition one should correct
the initial approximation to the leading order.

To summarize, the direct calculation of binding ener-

gies of threshold bound states, using regularized pertur-
bation theory, was shown to work for quantum mechan-
ical problems of arbitrary short-range potentials and for
massive quantum field theories in 1+1 dimensions. Gen-
eralizations to higher dimensions are straightforward.
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