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The full spectrum of a single hole in a quantum antiferromagnetic background (t J, J-& m-odel) is ob-
tained by complete exact diagonalization of small two-dimensional clusters. Various statistical proper-
ties of the spectrum are investigated. On a very wide range of the parameters the level-spacing distribu-
tion follows a Gaussian-orthogonal-ensemble Wigner law characteristic of chaotic spectra. At small sep-
aration, the spectral rigidity follows the universal behavior described by random-matrix theory and
presents deviations at higher energies. We argue that quantum chaos is a generic feature of complex
(i.e. , nonintegrable) strongly correlated fermion systems.

PACS numbers: 74.20.Mn, OS.45.+b, 75.10.Jm

A large theoretical effort is currently being undertaken analysis [6]. However, apart from a narrow low-energy
to achieve a better understanding of strongly correlated range, the many-body excitations cannot in general be de-
fermionic models in two dimensions (2D). The main scribed as a simple combination of elementary excita-
motivation is the experimental realization of such systems tions. In this Letter, it is our purpose to study these exci-
in the high-T, copper oxide superconductors. Although tations, i.e., to calculate the complete spectrum of the
superconductivity in purely repulsive fermionic models Hamiltonian, and investigate some of its statistical prop-
remains the main issue, a large number of researches erties.
have been devoted to the understanding of the antiferro- The study of spectral statistics in complicated systems
magnetic and metallic phases. The simplest (but still has been initiated by Wigner, Dyson, Mehta, and others
very complex) problem is the behavior of a single hole in to describe the spectra of nuclei [7-9]. These authors de-
an antiferromagnetic background. As we shall see later scribe the statistical properties of matrix Hamiltonians,
on, as far as statistical properties of the spectrum are con- with a Gaussian distribution of the elements around a
cerned, this limit is expected to contain many generic zero average. A remarkable feature of the random-
features of strongly correlated systems. matrix theory (RMT) is that the distribution of levels de-

In a pioneering work, Brinkman and Rice [I] intro- pends only on the symmetry of the Hamiltonian. In par-
duced the retraceable path approximation to calculate the ticular, if the Hamiltonian is invariant under time-
spectral density of a single hole moving in a classical Neel reversal symmetry, the statistical ensemble of matrices is
background. In order to preserve the antiferromagnetic invariant under orthogonal transformations and is called
order the hole, in first approximation, has to retrace its the Gaussian orthogonal ensemble (GOE). This RMT
path. This mechanism leads to a large incoherent back- has been applied to a variety of very diferent physical sit-
ground in the single-hole spectral density. Later analytic uations in nuclear, atomic, and molecular physics [10,11].
work based on the Born approximation [2] or on exact di- The relevance of RMT to describe spectra of electronic
agonalization methods [3,4] showed that the incoherent systems was first pointed out by Gorkov and Eliashberg
nature of the hole spectral function (at sufficiently large [12] and applied to disordered noninteracting electronic
energy) subsists when spin fluctuations are included. systems [13]. In the present case, the complexity results
These studies also revealed the presence of elementary not from disorder but from the many-body nature of the
lovv-energy quasiparticle (8'-function) excitations (see Hamiltonian. In this paper, we show that a simple model
also Ref. [5]). Very recently, the existence of the of correlated electrons exhibits features characteristic of
coherent band was confirmed by a finite-size scaling chaotic spectra well described by RMT.

The generic Hamiltonian in standard notations reads

i"Y =J,gS,'S';+, + —J~g (S;+S;+,+S; S;+,) —t g Po[c; ~;~, exp(ie. L)+c;+,~; exp( —ie x')]Pc. (. 1)
l, t l, E l, b, a

Pg is the Gutzwiller projector which enforces the constraint of no doubly occupied site. We have explicitly separated
the diagonal (J,) and the transverse parts (J&) of the antiferromagnetic exchange coupling between neighboring sites i

and i+e, with e=x or y. The Hamiltonian is defined on 2D JN x JN clusters defined on a torus (N =16 and 18 sites)
and we assume arbitrary twists x' in the boundary conditions [14] (a =0 corresponds to periodic boundary conditions,
i.e. , no twist). The twist x, in the a direction can alternatively be viewed as a magnetic flux penetrating one of the
torus' hole.

It is important to notice that only a few group symmetries are left in the generic model (1). Trivially the particle
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number is conserved. The Hamiltonian is also invariant
under spin rotation around the z axis and under discrete
translations. Hence, the Hamiltonian can be diagonal-
ized in every sector of S,'" and of the total momentum
Kz. In fact, most of the results we report in this paper
are generic and do not depend on the symmetry sector
considered as long as one can totally separate it from the
others [15]. Practically we shall consider the case of a
single hole and 5,"'=

& in order to have the largest Hil-
bert space. Only in very specific cases, additional sym-
metries remain: (i) If J~ =J, =J, (1) becomes isotropic
in spin space (i.e., spin rotationally invariant). Since
separating the various spin sectors is a difficult task we
have left this problem for future work [16]. (ii) If tr, =0
(a =x or y) or tr„= x~ some symmetries of the 2D square
lattice are preserved (e.g. , the 90' rotation around a site).
The choice of arbitrary twists x~ &x~ enables us to
suppress the degeneracies due to these symmetries. Note
that the 418 && 418 cluster [of translation vectors
T„=(3, ~ 3), y =1,2] is tilted by 45' with respect to the
crystal axes.

Since the size JV of the Hilbert space grows exponen-
tially with the system size N, we have restricted our
analysis to N =16 and 18 sites. By using S,"' (chosen as
—,
' ) and translation symmetries we can already reduce Jt'

to JV & JV blocks with respectively JV =6435 and JV
=24310 for 16 and 18 sites. The full spectrum (i.e. , the
JV eigenvalues) is calculated in two steps: (i) A Jacobi
matrix (tridiagonal) is generated by applying recursively
the Hamiltonian on an arbitrary initial (nonsymmetric)
spin-hole configuration, and (ii) a bisection method is

used to further diagonalize the Jacobi matrix. To get all
the eigenvalues of the original matrix, it appears that, in

step (i), it is often necessary to perform more than JV
iterations (typically —2Ã). The irrelevant eigenvalues
are then eliminated by standard methods [17]. Note that
in this approach, the CPU time grows like JV contrary to
the JV lnJV scaling in the standard Lanczos algorithm
procedure restricted to the obtaining of only the lowest
excited levels [3,4,6]. The complete diagonalization of
the largest system (N =18 in the case J& =0) required
60000 iterations and —2 h of CPU on a Cray-2 com-
puter. By the two-step procedure described above one
could in principle get the spectra [E„(K~S,"',a )]
(p =I, . . . , Ã, p = I, . . . , N) in all the symmetry sectors.
However, most of the results derived in this paper do not
depend on the quantum numbers [K~,S,'"] (as long as the
system is not spin polarized) or on the flux variable x so
that we can restrict ourselves to any particular value.

The density of states Nt, t(E) =+„6(E—E„) is shown
in Fig. 1 and is almost Oat over a wide energy range. The
average level spacing is ceN/A' (except at the edges of
the spectrum). At this stage, it is important to discuss
briefly the diA'erences between Nt, t and well-known spec-
tral densities of the form A(co) =g„~Ap„~ 6(co —E„
+Ep) (extensively studied, e.g. , in numerical calcula-
tions) where the weighting factor ~Ap„~ is simply the
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FIG. I. Density of states of the t-J, model for A =18 and

J, =0.25. The horizontal axis is labeled in terms of the total
energy (~ JV).

square of the matrix element (+p~O~+„) where 0 is some
operator of physical interest. In general, 0 generates
only low-energy excitations ~%'„& above the ground state
~+p) (like particle-hole or spin-wave excitations) so that
A(ro) is exponentially suppressed for excitation energies
ro ( =E Ep) larger than some characteristic energy
scale (typically t or J) whereas the full spectrum (mea-
sured from the ground-state energy) is not bounded
(when N ~).

We have first studied the spacing distribution P(s) be-

tween consecutive levels. As a standard procedure, we

have first "unfolded" the spectrum E„by the transforma-
tion x„=N,. „(E„)where N, „ is the smoothed integrated
density of states [11],so that the unfolded spectrum has a
constant density of states. In addition, we have eliminat-
ed 1000 eigenvalues on each side of the spectrum. The
result is shown in Fig. 2 for N =18, J, =0.25, and J& =0.
It is very well fitted by the Wigner surmise for the GOE
[9]:

P(s) = —,
' xsexp( —

4 xs ), (2)
where s is the distance between levels in units of the aver-

age interlevel distance. The repulsion between levels

[P(s) 0 when s 0] is the signature of a chaotic be-
havior for the underlying classical system. It is of impor-

S

FIG. 2. Level spacing distribution P(s) in the t J, model for-
4'= ll and J, =0.25. Ideal GOE and Poisson distributions are
shown as full lines.
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huge degeneracy appears and the spectrum is made of
equally spaced levels that lead to delta functions at s =1
and s=0 in P(s). As seen previously, a nonzero hopping
t changes P(s) drastically, although we do not know pre-
cisely where this crossover occurs. On the other hand,
when J& increases [=0.95 in Fig. 3(c)l, P(s) deviates
more and more from GOE and tends to become Poissoni-
an. This tendency is confirmed by the behavior of Z (E).
Indeed, for J~/J, I the spin rotational invariance is
recovered and the total spin becomes a good quantum
number. Since, practically, we do not separate the vari-
ous spin sectors we start to mix several GOE spectra, and
the statistics of the resulting spectrum becomes Poissoni-
an as expected. However, it is very probable that the to-
tal spin being a good quantum number has no bearing on
the level repulsion [20]. In other words, in each spin sec-
tor, the statistics would remain GOE. As seen from a
direct comparison of Figs. 3(a) and 3(d) which corre-
spond respectively to 16 and 18 sites and the same set of
parameters, the spectral rigidity does not depend crucial-
ly on the system size. It is notable that an increase of the
Hilbert space by a factor —4 does not lead to any
significant modification of the spectral rigidity.

We finish this Letter by briefly discussing the connec-
tions between this work and standard approaches to the
problem of strongly correlated fermions. A central issue
is whether or not the GOE statistics rules out a Fermi
liquid description or more generally any perturbation ex-
pansion from a noninteracting limit. If many-body low-

energy excitations can be built from renormalized ele-
mentary excitations (e.g. , quasiparticles in Landau Fermi
liquid theory, spin waves in quantum antiferromagnets)
and if interactions between these excitations are neglect-
ed, one would expect the system to be in essence similar
to a noninteracting or integrable model and hence to have
a Poissonian statistics at low energy. On the other hand,
recent numerical calculations [6] have confirmed the
presence of a quasiparticle peak in the one-hole spectral
function. Such features are rather general and are
present in many dynamical correlation functions such as
the spin structure factor (in that case, the spin-wave excj-
tations play the role of the quasiparticle excitations).
How does this reconcile with the GOE statistical property
of the spectrum? There might be so far two possible ex-
planations (which are not mutually exclusive): (i) First,
the elementary excitations are expected only in a narrow
energy range above the ground-state energy whereas the
present study deals with the full spectrum with an ex-
ponentially large (compare to N) number of states at
higher energies. (ii) Even at low energies, because of the
interactions between elementary excitations, the problem
does not reduce to a true noninteracting problem. Hence,
our results do not rule out renormalized low -energy
quasiparticle excitations but shows that a statistical
description analogous to the RMT is appropriate at
higher energies.

The computer simulations were done on the Cray-2
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