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Ring Macromolecules in Topologically Restricted Environments
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We analyze the effect of disorder on the statistics of a ring macromolecule by a computer simulation.
We show how the statistics of the ring change from obeying self-avoiding to lattice animal statistics. We
find a scaling relationship to characterize this crossover behavior. We further show how this problem
maps onto a related study on two-dimensional vesicles with a pressure difference.
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The discovery of DNA molecules in closed circular
form has given rise to numerous studies on the properties
of ring macromolecules. There has been a lot of work
done studying the dynamics of rings in networks, which is
particularly significant, as the diffusion of rings through
networks is the technique of choice to help characterize
these ring DNA [1,2]. The statistics of rings in random
media, however, has only been postulated.

In dilute good solutions a ring obeys self-avoiding-walk
statistics, i.e., the radius of gyration scaling with the
molecular weight is well described by the relationship
Ry~ N, where v is the Flory exponent v=3/(d+2).
When the ring is introduced to a network, the radius of
gyration is expected to be strongly affected. The network
induces a net attraction between monomers of the ring
polymer, as the ring cannot include any of the obstacles
of the network. Therefore, if one were to increase the ring
size or the concentration of impurities, a ring in a
network will start obeying lattice animal or branched
polymer statistics. This is in contrast to the case of
linear chains where a disordered medium (annealed or
quenched) does not induce a change in the chain statistics
(i.e., in the exponent v), as long as the impurity concen-
tration is below the percolation threshold [3,4].

The study of ring macromolecules in disordered net-
works is associated with a number of problems. In per-
forming an analytical treatment, it is very difficult to in-
clude the constraint of the network when formulating the
partition function of the ring [1]. Further, most of the
computational schemes designed to study the statistics of
entangled polymeric systems have been built with the
purpose of studying linear chains. The topological con-
straint of forming a ring, in a network, introduces a num-
ber of complications, which make it rather difficult to ex-
tend the existing simulation schemes to study ring poly-
mers. Recently, there have appeared in the literature
some simulation schemes designed specifically to study
end-restricted polymers, such as rings [5]. Unfortunate-
ly, these too have been built to study dilute systems of
rings, and the addition of disorder into the system has yet
to be addressed.

In this Letter, a new algorithm is designed to study the
properties of self-avoiding ring polymers in disordered

systems via a Monte Carlo approach. We show how the
properties of the ring change as the concentration of dis-
order is increased, and how this behavior can be described
by a simple scaling relationship. We further show how
the scaling behavior that we obtain through the study of
rings in disorder is also present in another class of prob-
lems, namely, a two-dimensional vesicle which is subject-
ed to a pressure difference between the interior and the
exterior of the vesicle.

One of the first concerns that presents itself when one
starts examining the problem of a ring in a disordered
system is how one generates the ring in the first place,
even before any equilibration scheme can be applied.
One cannot simply start off with a random walk and at-
tempt to close it, as then there is no way of ensuring that
a network point is excluded from the interior of the ring
until all the operations are performed. Computationally,
this is very inefficient, and as the size of the ring or the
concentration of disorder is increased, it will take a prohi-
bitively long time just to generate the initial configura-
tion. To overcome this we use the following scheme.

On a lattice the final form of the ring is a polygon con-
sisting of N sides. One can subdivide this polygon into
smaller polygons and continue with this subdivision until
we approach a polygon whose dimensions are the size of
the lattice spacing. For example, if we were to grow the
ring on a square lattice, the smallest unit that the polygon
is composed of would be a square of size a Xa, where a is
the lattice spacing.

We apply this principle in reverse to grow a ring. We
start off with the smallest possible unit, a “primitive
cell.” This primitive cell can be placed anywhere on the
lattice as long as its corners do not coincide with a net-
work point. The algorithm proceeds by choosing a side of
the first cell and attaching another cell to it, such that the
two cells share a common side. [This is what we refer
to as a nearest-neighbor (NN) configuration. A next-
nearest-neighbor (NNN) configuration would be one in
which two cells share a common corner.] The perimeter
of the new polygon formed is what defines the ring. Then
we choose a cell at random from those which we have
placed on the lattice and try to attach another cell to it in
a nearest-neighbor configuration. In this way we contin-

© 1993 The American Physical Society 461



VOLUME 70, NUMBER 4

PHYSICAL REVIEW LETTERS

25 JANUARY 1993

ue attaching cells until the perimeter of the polygon
formed reaches the desired value. In order to accommo-
date the topology of the ring polymer, when we attach
these cells we have to apply three rules. The first rule is
that no two cells can occupy the same site. The second
rule states that a cell can have a next-nearest neighbor if
and only if it and its next-nearest neighbor share a com-
mon nearest neighbor [Fig. 1(a)], and the third rule is
that no cell can be attached in a configuration in which it
has only two nearest neighbors on opposite faces [Fig.
1(b)].

The ring that is grown can be thought of as being com-
posed of two types of cells, bulk cells and perimeter cells.
Bulk cells have a nearest-neighbor count equal to the
coordination number of the lattice. That is, they are sur-
rounded on all sides by other cells. Perimeter cells have a
nearest-neighbor count less than the coordination number
of the lattice and so contribute at least one side towards
the perimeter of the polygon.

Once the ring is grown inside the network, the ring is
defined by a surface layer consisting of the perimeter cells
with an underlying layer of bulk cells. Now, imagine
that we allow cells to absorb and desorb from this sur-
face, with equal probability. The topology of the surface
has to be maintained by implementing the three rules
which we have postulated earlier for the ring growth al-
gorithm. To account for the fixed size of the ring, any
event (absorption or desorption) has to conserve the per-
imeter of the surface. We allow for a maximum of two

FIG. 1. The violation of the excluded volume constraint. (a)
Here we have a pure next-nearest-neighbor contact between
neighboring cells. (b) In this situation two branches of the ring
coalesce. In both these situations the hatched cell is the off-
ending cell.
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events by which the perimeter of the ring is restored to its
original value, i.e., if one event changes the perimeter of
the ring, we allow for it to be compensated by the oc-
currence of a second event. (An event is defined as the
absorption or desorption of a single cell.)

Another primary concern that arises when performing
such a simulation, i.e., one in which all configurations of
the ring are equally probable, is whether the algorithm is
ergodic. The two types of moves that we use in our simu-
lation have a physical analog. A one-square move can be
thought of as a local perturbation of the ring, while the
two-square move involves the long-range transport of
monomers, in our case a kink, along the perimeter of the
ring. These types of moves have also been used in simu-
lations of self-avoiding walks by Caracciolo and Skokal
[6] and have been shown to be ergodic.

In order to make sure that our algorithm recovers the
correct statistics for the scaling exponent v, the simula-
tion was run for a variety of chain lengths, in the absence
of disorder. A lattice of size 64 X64 was used and period-
ic boundary conditions were implemented. Rings of 20,
40, 60, 80, 100, 120, and 200 links were grown and
equilibrated using the algorithm that we described ear-
lier. The exponent v which describes the radius of gyra-
tion scaling was found to be equal to 0.745 % 0.006, in ex-
cellent agreement with theoretical predictions as well as
the previous simulations on this system [5]. Also it has
been conjectured that in the absence of any disorder the
area enclosed by the ring should scale with the radius of
gyration of the ring as (4)~N?2" [7]. In our algorithm
the area enclosed by the ring is simply equal to the total
number of cells that comprise the ring. We found that
the exponent V' that describes the scaling is equal to
2v+0.005. These seem to be strong indications that our
algorithm produces equilibrium structures.

We then proceeded to calculate statistical properties of
our rings in the presence of a random potential by intro-
ducing disorder into our system. Points at random were
picked from an M X M integer array and then placed on a
lattice of the same dimensions. Here, the advantages of
using our simulation become obvious as the constraint of
the disorder is simply taken care of by not allowing any
corner of a primitive cell to coincide with an impurity
point.

Before the ring growth algorithm was started, a stan-
dard cluster counting algorithm was used to identify the
infinite cluster [8]. The ring was seeded on this cluster,
i.e., the first primitive cell was placed on this cluster.
The ring was then grown and equilibrated on this cluster.
The ring was allowed 5N ? movements initially to equili-
brate. Statistical properties of the ring were then calcu-
lated at the end of each Monte Carlo step where each
step involved 5N ? movements of the ring. To make sure
that the ring had equilibrated the movement of the center
of mass of the ring was recorded, i.e., we checked to see if
the ring had sampled the entire lattice. However, as the
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concentration of disorder or the size of the ring was in-
creased, the diffusion of the ring slowed down dramatical-
ly. This imposes a practical limitation on the size of the
rings and the concentration of disorder that one can ana-
lyze with our algorithm.

The concentrations of disorder used were in the range
of p=0.02 to p=0.12, where p is defined as the fraction
of sites on the lattice that are occupied by impurities.
Chains of length N =20, 40, 60, 80, 100, and 120 were
used. The simulations were run for 10° Monte Carlo
steps and the results were averaged over 5 different reali-
zations of the disorder.

We computed the radius of gyration of the chain as a
function of the concentration of disorder. One can in fact
speculate, by means of a scaling argument, how the disor-
der would affect the statistics of the chain. We know that
as the concentration of disorder is increased the ring
changes from a self-avoiding walk to a lattice animal.
The radius of gyration scaling, of a lattice animal, with
the chain length N, goes as R;~N"*, where via is 0.64
in two dimensions [9].

We can determine the scaling factor of the radius of
gyration with the concentration of disorder by use of a
scaling argument. The characteristic length scales that
enter the picture are Ry, the unperturbed radius of gyra-
tion of the chain, and the length scale of the disorder,
which is denoted by £&. We can then write [10]

RZ(p,N)=Ro,(R3/E?), 1)

where ¢, is a dimensionless function. In our model, the
length scale & is simply the distance between impurities
which scales with impurity concentration as &~1/p '/,
where d is the spatial dimension. Ry is the unperturbed
Flory radius of gyration of the chain (R,~N"). There-
fore, R}(p,N)=R4¢,(pN?*). In the limit of PN |
we can expand ¢,(x)~x? Since in this limit we have
Ry~N" and Ro~N", a=(vpa—Vv)/v.

In Fig. 2 we plot Rgz/sz vs pN?'. As can be seen
from the plot the curves for different /V’s the concentra-
tions of disorder collapse to a single curve confirming our
scaling argument. The value of a that was obtained from
the simulation is @ = —0.1217£0.02 [11]. The value for
the lattice animal exponent that we recover from our
scaling plots is vpa =0.654 +0.02. The fairly large error
bars in the calculation of the exponent are a result of the
small system size that we were able to use. Since subtle
changes in the concentration of disorder are not picked up
by this small system size, we have to use fairly large in-
tervals when we want to compare results of different con-
centrations of disorder.

A very similar scaling behavior was also observed in a
study of two-dimensional vesicles with a pressure differ-
ence by Leibler, Singh, and Fisher [12]. They found that
the vesicle also started obeying branched polymer statis-
tics when the pressure inside the vesicle was less than the
pressure outside. They showed that the radius of gyra-
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FIG. 2. The scaling plot for the radius of gyration of the ring
for different ring sizes, NV, and concentrations of disorder, p. As
can be seen from the plot the data for the different ring sizes
collapse to a single curve, confirming our scaling variable p/NV 2.

tion could be described by a scaling law, RZ~N?
x X(pN*"), where p=Apa?/kgT. They found that ¢ was
equal to 2.13+0.17. The deviation from the expected
value of 2 for ¢ was explained on the basis that they were
limited by the size of the vesicles that they could use and
consequently had fairly large finite-size corrections.

Leibler, Singh, and Fisher also showed that a similar
scaling relationship can be derived for the area enclosed
by the vesicle, i.e., A ~N2V"Y(p"N""), where v4=v as es-
tablished earlier. To complete the analogy between the
problem of the vesicles we plotted the area enclosed by
our ring as a function of pN?2¥ (see Fig. 3). Again, from
the plot the data collapse to a single curve.

In conclusion, we have demonstrated that the effect of
introducing the topological constraint of forming a ring in
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FIG. 3. The scaling plot for the area enclosed by the ring as
a function of the size of the ring and the concentration of disor-
der. The area enclosed by the ring in our simulation is simply
given by the total number of cells that comprise the ring. All
the data again collapse to a single curve.
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a fixed disordered network introduces a whole new series
of interesting properties. The ring polymer reacts to an
increase in the concentration of disorder by changing
from obeying self-avoiding statistics to obeying lattice an-
imal or branched polymer statistics. Both the radius of
gyration and the area enclosed by the ring can be de-
scribed by very simple scaling relationships which show
the interplay between the chain length and the concentra-
tion of disorder. The similar scaling relationship found in
the vesicle problem raises the interesting question as to
whether the averages performed using a disorder ensem-
ble maps onto the pressure ensemble. In our problem the
analog of the scaled pressure difference used by Leibler,
Singh, and Fisher is p, the concentration of impurities.

While the algorithm we have outlined in this paper has
been specific to a square lattice, it can be easily extended
to other lattices with the proper choice of a primitive cell.
For example, in a triangular lattice one would start with
a rhombus, composed of two equilateral triangles and
then proceed in the same manner as with the square lat-
tice. The extension of this algorithm to the third dimen-
sion is also possible. Since the algorithm generates closed
surfaces at each step, the inclusion of the third dimension
will be straightforward as knots cannot be generated via
this algorithm.
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