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Beam Divergence with Harmonic Gyroresonance in Focusing Wiggler and Axial Field
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The transport of a relativistic electron beam was studied experimentally and numerically in a magnet-
ic field configuration which consists of a focusing wiggler as well as an additional axial guide field. A
new beam divergence was found for the lower side of the magnetoresonance. It was identified as due to
the eAect of the second harmonic mode of the cyclotron frequency in the resonance, determined by
nQ!! =k I!!for n =2. The harmonic resonance was detected for the planar wiggler first, and it could ap-
pear also for the helical one.
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Successful operation of a Raman free electron laser
(FEL) using a relativistic electron beam (REB) has been
reported for both planar and helical wiggler configura-
tions [1-4]. To obtain a high-power performance of the
FEL, a stable transport of the beam in the wiggler is one
of the key issues. The introduction of an axial uniform
guide field superimposed on the wiggler is usually re-
quired to keep the orbital stability in the transport, while
it will involve some other complex features like the mag-
netoresonance between the cyclotron motions and the
wiggling of the electrons [5]. It is well recognized that
the beam diverges and spills out when the electron cyclo-
tron frequency 0!! in the guide field Bg approaches the
wiggling frequency K„v~~, where k„ is a wiggler wave
number, Q~~=eBs/yom„yti=[1 —(v /c )] ', v and c
are electron and light speed, respectively, and the su%x II

indicates axial components [6].
In this Letter we describe an experimental and numeri-

cal study on the transport of a REB (Eb —0.8 MeV and

B(r) =B„[cos(k z)[sinh(k x)sinh(key)e +cosh(k, x)cos

Ib —300 A) through a combination of a focusing type
planar wiggler [7] and. an axial field: We retain a rela-
tively low additional Bg to control the beam dynamics at
the entrance of the wiggler and the FEL performance.
We found a new type of beam loss at an axial field far
lower than the value of Bg corresponding to the funda-
mental magnetoresonance Q!]=k„i!!,' e.g. , the loss is in
the parameter region of the so-called group I. Therefore
it clearly differs from the "harmonic" gyroresonance
which was predicted to occur in group II at A~~ =nk vi (n
an integer) by Chu and Lin [8], where Oi is a time-
averaged cyclotron frequency in B!!. We need another ex-
planation for the new resonance. We made an analytical
study and a numerical simulation on the resonance and
its effect on the beam transport through the wiggler. We
carried out a similar numerical study for the case of a
helical wiggler and the result suggests we will also have
the same kind of resonance and beam degradation. The

!
magnetic field in a planar focusing wiggler with a uni-
form field Bge, is given by

h(key)ey] —csin(k z)cosh(k x)sinh(key)e, ]+Bse, ,

where k =ks =k„/J2 and the wiggler axis is in the z
direction, and x and y are the horizontal and vertical
coordinates transverse to the beam propagation [9]. The
field is sufficiently approximated near the axis by

B(r)-B [1+(k x)']cos(k z)es+B~e, for y —(). (2)

The transverse motion of the electrons in the wiggler is
given by

dv~ = 0 tv ~ && e, +F(x )cos (cot )e„; (3)
dt

here v& is the vertical velocity component, cut =k„F!!t,
and [!!is a time-averaged axial electron velocity. The
first term represents cyclotron motion of the electron in

Bs, and F(x) in the second is a force applied on the elec-
tron by the wiggler,

F(x)—t ~~A [1+(k x) ]; (4)

here, 0 =eB /yom, . Since t
~~

—const and (k„x) &&1,

! the first-order solution of the vertical velocity of the elec-
tron is composed of two terms:

v =
vg cos(Q it +P) + a sin(cot ), (5)

where

a = —coF(xo)/(n,
~

—co'), (6)
and vg and tb are the velocity and the phase of the cyclo-
tron motion, respectively. xo is the guiding center of the
electrons, free from the cyclotron motion and focusing.
Equation (5) is integrated to yield

x =xo+Ax =xo+ (vs/A i)sin(n~~t + 1b)
—(a/co)cos(cot ),

(7)
which reveals that there is a magnetoresonance at 0!!
~ co=0 through a. The second-order solution is ob-
tained by a successive iteration. Putting Eq. (7) into (4),
we obtain

F(x ) —F(xo) +2F(0)k„xohx+ F(0) (k„Ax ) . (8)
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The first term in Eq. (8) gives the solutions Eq. (5) and

Eq. (7), and from the next term the second-order solution
becomes

v~ 2 =F(0)k„xo[vgcos[(&II+ co) t+p]/[&II(2&II+ co)]

+ vg cos[(QII to)t + p]/[QII(2AII a1)]

+ a sin2cot/[(2' —0 II) (2'+ &II) l] . (9)
When the conditions of the harmonic resonances

~00

0

100

(io)

kya&II
B,I- —8.[i+(k,x, ) ] +8, ,

2 co

which is rewritten for the cyclotron frequency:

(i 2)

n„- —[i+(k„x,)']',",+n„. (i3)

As All is a function of 0„, the field of magnetoresonance
shifts depending on B„. The second harmonic of the
magnetoresonance typically will occur toward a lower
field as B increases at

2Qll +60=0, All+ 2M =0
are satisfied, the wiggling amplitude will grow and then
the larger transversal velocity will be introduced. Simi-
larly, from the third term there comes the harmonic reso-
nance conditions,

3 Q ll 4 co = 0, A ll
+ 3co = 0 .

If we proceed with the iteration further, the general con-
ditions for all higher harmonic resonances are obtained.
These include the results of Chu and Lin, and also show
the existence of a new harmonic resonance. The wiggler
field B„contributes to the longitudinal field in the first
order through its z component for y —0,

8 II 8 J2 sin (tot ) [1 + (k„xo) ] (k~p ) +Bs,
where y should be evaluated at the electron position,

y —(a nII/co 2)sintot . (i i)
Equations (10) and (11) give the time-averaged axial
field Bll and cyclotron frequency All experienced by elec-
trons as
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FIG. 1. The dependence of the beam transport ratio q on the
axial field Bg for a planar wiggler at L =50k . Eb =800 keV,

=45 mm. (a) 8 =0.6 kG, (b) 1.0 kG, and (c) 1.4 kG.

radial and angular directions. The wiggler period A,„,and
the radii of the drift tube and the beam are 45, 10, and
7.5 mm, respectively. Figures 1(a), 1(b), and 1(c) are
the results of the simulation for B =0.6, 1.0, and 1.4 kG,
respectively, showing Bg dependence of the beam trans-
port ratio g defined as the beam at the 50th period of the
wiggler, normalized with the initial value. The wiggler is

tapered in the first five sections and the adiabatic field
variation therein is taken into account. The particle ener-

gy in the beam is 800 keV. When Bg becomes high, g de-
creases finally to zero. This is attributed to the funda-
mental magnetoresonance, which separates the regions of
groups I and II. At Bg lower than the fundamental reso-
nance (—2.5 kG, when 8„ is low), a dip appears in ti and
the beam intensity suffers about (30-50)% attenuation.
The cause of the intensity reduction is not expected from

0
nII ——— " [1+(k,x o) '] ',

2 3N
(i 4)

2.0

which is obtained substituting the resonance condition
20II —co into Eq. (13). To investigate the beam transport
in the magnetic configuration, the orbit of the electrons
was traced numerically using the field represented by Eq.
(1). We neglect simply the beam space charge and other
collective efTects on individual beam particles assuming
the beam intensity to be relatively low. The equation of
motion used in the following calculation is

dv
y'OtPVVll =eV X Q, (is)

dz

and is solved numerically by the Runge-Kutta method.
Here, yo is constant. In the simulation, 100 electrons are
traced, assuming equal distribution initially in both the

1.0—
CQ

- Eb =800

t

1.0
0'

5.02.0
Bg (kG)

FIG. 2. The region of 8]] where the dip appeared on the
beam transport ratio of Fig. 1 for B 0.6, 1.0, and 1.4 kG.
The solid and dashed curves are the analytical resonance condi-
tions [Eq. (14)] for k„xo 0.71 and 0.5, respectively.
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— (c) F1G. 4. (a) Experimental result of the axial field dependence
on the transported beam at the end of the wigger: L =33k .
Eb —800 keV, B„=1.8 kG, and X =45 mm. (b) Simulation
result of the axial field dependence on the beam transport ratio
g. The parameters of the simulation are the same as the experi-
ment.
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FIG. 3. Trajectory of the electron at 8 =1.0 kG, 8 =2.5
kG, Eb =800 keV, and A, =45 mm. Initial position is x = —6.0
mm, y =0 mm. (a) Projectional view (on the x-y plane). (b) x
position vs axial distance z/k . (c) y position vs axial distance
z/k .

the theories presented so far. In Fig. 2, the regions where
the dips appeared are plotted in a B Bg diagram for
B„=0.6, 1.0, and 1.4 kG. On the other hand, the solid
and dashed lines indicate the analytical values of the res-
onance field of the second harmonic, which is derived
from Eq. (14), for k„xo=0.71 and 0.5, respectively (cor-
responding to guiding centers x0=7. 1 and 5.0 mm, re-
spectively). The figure clearly shows that the dips are at-
tributed to the second harmonic resonance. The trajec-
tories of the electron with the initial positions (x,y)
=(6.0,0) mm are shown in Figs. 3(a)-3(c) as the projec-
tions of x-y, x-z, and y-z planes. Figure 3(a) gives the
transversal drift due to the inhomogeneous field of the
wiggler, which starts in the y direction at first, and then
the guiding center of the cyclotron motion begins to ro-
tate clockwise around the axis as the result of the beta-
tron oscillation. The particle eventually gains a suffi-
ciently large transversal energy and is finally intercepted
by the wall. The period of the electron quiver motion
coincides with k„ initially, while the amplitude is gradu-
ally modulated with the period 2A, [Figs. 3(b) and 3(c)].
After reaching z —20K„, the quiver motion of the 2X
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FIG. 5. The dependence of the axial field 8g on g for a heli-
cal wiggler at L =50k . 8 =1.3 kG, Eb =800 keV, A,„=45
mm.

period dominates and comes with a rapid growth of the
cyclotron gyration, which corresponds to the second har-
monic resonance.

We carried out an experiment of the beam transport in
a focusing planar wiggler configuration, where B„ is pro-
vided with an array of permanent magnets and Bg with a
solenoid. The details of the experiment were reported
elsewhere previously [10], and a brief description will be
given. The pole face of the magnets has a parabolic
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shape to give the field of Eq. (I). The magnets are made
of Nd-Fe-8 to give 8 —1.8 kG and have 33 periods with
pitch length of 45 mm, including 5 periods of the en-
trance adiabatic tapered section. An intense moderately
relativistic electron beam (Eb ~ 800 keV) is generated by
four-stage inductive accelerating modules and transmit-
ted into a drift tube of 22.4 mm diameter through the
wiggler. The dependence of the beam transport on Bg
with a fixed 8 is measured at the end of the wiggler
(I —I.S m) and compared with the simulation. Typical
examples are shown in Figs. 4(a) and 4(b). These two
figures agree well in revealing common features: (I )
Above 2.8 kG, the beam ceases to propagate due to the
fundamental resonance; (2) at 8& —1.6 kG there is a dip
down to —20%; (3) under 0.6 kG, good beam transport is
obtained; and (4) at Bs—1.0 and 2.0 kG subsidiary small
dips seem to appear. It is expected from Fig. 2 that the
second harmonic resonance occurs at around Bg —1.6 kG,
which corresponds to the experimental result. Therefore,
the dip observed experimentally at Bg —1.6 kG is identi-
fied to be due to the second harmonic. The small dips at
Bg=1.0 and 2.0 may be caused by the harmonic of
3 0 ~[

~ m = 0 and 30 [I + 2' = 0, respectively.
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FIG. 6. The dependence of the initial beam radius rb on the
beam transport ratio for a helical wiggler at ag =1.0 kG with
the same parameters of Fig. 5.

We also studied numerically the beam transport in a
helical wiggler. The helical wiggler has an intrinsic
focusing which would limit the transversal drift of the
particles due to the field gradient. Figure 5 gives the
dependence of the beam transport on Bg with the parame-
ters 8 =1.3 kG, Eb =800 keV, and k =45 mm. The
helical field 8„ is assumed as

B„(x)=28„[I[(k„r)cos(tt—k„z)e„—1~(k r)I(k r)sin(ttt —k„z)et,+I~(k r)sin(tt —k„z)e,]+8se, , (16)

where I ] and I i are the modified Bessel function and its
derivative, respectively [11]. The radii of the beam and
the drift tube are assumed to be 7.5 and 10 mm, respec-
tively. The upper figure is for the usual direction of Bg
and the lower for the reversed direction. A dip due to the
second harmonic is found at Bg 1.0 kG. Another small
dip around Bg —10 kG corresponds to the resonance due
to the spatial harmonic of the wriggler, A]~-2k i []. A
deep dip appearing at Bg- —5 kG corresponds to the
resonance, —Qt —k„v~~ [8]. The beam transport near
these resonances, however, is subject to the beam radius.
Figure 6 shows the dependence of the transported current
on the initial beam radius at Bg =1.0 kG, where the dip
due to the second harmonic resonance appeared. The
simulation indicates that when the initial radius of the
beam rs is reduced to rb-0. 3/k„( —2. 1 mm), the parti-
cles will no longer be interrupted by the wall for both
cases.

In summary, it was shown experimentally and numeri-
cally that the beam transport degrades in a configuration
of a focusing planar wiggler with a superimposed axial
uniform field, due to the cyclotron harmonics of the mag-
netoresonance even in the region of group I, as well as
due to the spatial harmonics of the wigger field. The res-
onance also takes place in a helical wiggler with an axial
field.
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