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Temperature hysteresis is theoretically studied for the volume phase transition of chemically cross-
linked gels. The condition of the appearance of a “surface skin layer” of new phase is formulated
and calculated. The result predicts that the surface skin layer is destabilized near the critical point
of the transition due to volume fluctuations. We discuss the relevance of this result to inaccessibility
to the Ising critical point [L. Golubovi¢ and T. C. Lubensky, Phys. Rev. Lett. 63, 1082 (1989)].
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Volume phase transition in chemically cross-linked
polymer gels (chemical gels, for short) has been stud-
ied by many people both experimentally and theoreti-
cally [1]. The transition between a swollen phase and a
shrunken phase looks apparently like the liquid-gas tran-
sition in fluids, where the density field characterizes the
transition. The volume phase transition of gels, however,
has several distinguished features due to elastic coupling
between the density and shear deformation. At the crit-
ical point, the second order transition where the bulk
osmotic modulus K vanishes does not exhibit Ising criti-
cal behavior [2]. This is due to the long-range interaction
among the local densities, mediated by the shear defor-
mation [3] caused by local swelling or shrinking. (Exper-
imentally, however, the magnitude of the shear modulus
at the critical point seems to be a subtle issue [4,5].) On
the other hand, far from the critical point, the coexis-
tence between the shrunken phase and swollen phase in
the bulk gel shows a spongelike domain structure [6], and
this structure is quite stable due to the elastic coupling,
though rigorously the system is in a metastable state. In
this Letter we focus on the effect of this coupling on the
transition temperature. Hysteresis is a common feature
of first order transitions. The effect of uniaxial loading on
the transition temperature was measured and analyzed
(7], but the link between this effect and the temperature
hysteresis has been overlooked. The width of hysteresis is
bounded either by the spinodal instability (K + §u = 0)
or by the bulk instability (K = 0), u and K being shear
and bulk moduli , respectively. These instabilities corre-
spond to different modes of deformations as long as u # 0
[8]. But these criteria give only upper bounds of hystere-
sis, as we describe in detail below. To make the following
discussion clear, we shall define the time domain of our
interest. We recall that, practically, we can never ob-
serve the thermally activated nucleation in the bulk of
gels near the (rigorous) thermodynamic transition point
[8]. Unlike the systems with short-range interaction [9],
energy cost in the activation energy is not governed by
the interfacial energy, but by the shear deformation en-
ergy which accompanies the local change of the density of
gel. Because of the absence of characteristic length in the
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elasticity theory, the scaling argument [6, 8] shows that
the activation energy of nucleation in the bulk is propor-
tional to the volume of gel and is therefore macroscopic.
Though we consider only the short-time phenomena in
the above sense, we also assume that the time domain is
large enough that the system is always in osmotic balance
with surrounding solvent. The osmotic relaxation occurs
through the permeation of solvent [10], whose relaxation
time is typically several tens of minutes for spherical or
rodlike gels with a diameter ~ 1 mm [11]. We note that
for a system in a single-phase state, the osmotic balance
implies also isotropic deformation. An important experi-
mental observation is that in the study of the deswelling
transition of a spherical gel [11], where the temperature
hysteresis was also measured, the transition begins by
the appearance of a new phase domain on the surface of
the gel (“surface skin layer”). We develop an analysis on
how the observed transition temperature is related with
the formation of the surface skin layer. Then we extend
our argument to the transition which begins from the
edges or the vertices of the sample. The present consid-
eration is fairly general for the systems with long-range
interaction, and among those systems the gel is one of
the most suitable systems to study, because the thermo-
dynamic states of gels can be observed and controlled by
many experimental methods, either physically or chem-
ically, and also because the dynamics within gels occurs
on moderate time scales (cf., in metal alloys the global
change of composition takes practically an infinite time).
For the moment we consider only uniaxial deformations
with the axis being normal to the gel surface, and de-
scribe them by the transversal and the longitudinal (lo-
cal) elongation ratios, A; and A;, respectively, measured
from an appropriate isotropic and homogeneous reference
state [12]. We note that the deformation of a surface skin
layer is asymptotically uniaxial in the very proximity of
the transition, even though the gel surface has a finite
curvature.

In the numerical calculation which we will show later,
we employ the Flory model free energy [13]. The free
energy per unit mass of monomers, o, is a function of
the Flory-Huggins parameter x and the ion content per
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chain of gel network, f, as well as A\; and A;. Although
the qualitative result will be independent of the present
choice of model, an important point is that the model
includes those variables like x and f which play the same
roles as pressure and temperature, respectively, in the
liquid-vapor transition [14]. We apply the interface con-
dition of the gel [15] to the present geometry, in which
the new phase with (A, A;) = (A, As) coexists with the
original isotropic phase with (A:,; A;) = (A, A). Noting
also the osmotic balance with surrounding solvent, the
condition becomes
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where the notation (-)|(f,x,x,x,), €tc., means to evaluate
the function (-) at (f, x, At, At) = (f, X, Ay As), etc. Equa-
tions (1) and (2) define in the (f, x) plane a curve which
we shall call the uniazial transition curve. It is schemat-
ically shown by a solid curve in Fig. 1(a). In order to
make it easier to grasp the topological structure of the
curves and of the manifolds which we will introduce be-
low [Figs. 1(a), 1(b), and 1(c)], we exaggerated a portion
of smaller values of x as compared with the result of our
numerical calculation (see below and Fig. 2). In Fig. 1(a)
we have also shown two other curves: The broken curve
shows the spinodal at which the uniaxial osmotic modu-
lus K + % 4 vanishes, or equivalently
/ 2./
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under osmotic balance. The dotted curve in Fig. 1(a)
shows the bulk instability (K = 0), along which
M [ xan /0N = 0% |(5,,a0}/0A% = 0 holds.
The two branches of bulk instability meet at the (real)
critical point (2], where 83{a’ |; . 4 »)}/0A® vanishes.
We see from Fig. 1(a) that the (uniaxial) transition
temperature on which x depends shows hysteresis. Us-
ing (1) and (2) we can identify on this curve the portion
representing the transition from an isotropically swollen
phase to a uniaxially shrunken phase (A > A;) and the
portion representing the transition from an isotropically
shrunken phase to a uniaxially swollen phase (A < Ay).
The uniaxial transition curve and the spinodal touch with
each other. This point, where 8%a’/OA} | ;, 1) van-
ishes, can be identified with the inaccessible, or “hid-
den,” Ising critical point of the gel [2] (see also [3]); we
can check it by evaluating the Ising-like part of the effec-
tive Hamiltonian of [2] using the tree approximation. The
inaccessibility of the Ising critical point is generally due
to the presence of a certain unstable fluctuation mode as
clarified in [3]. On the other hand, we see in Fig. 1(a)
that the uniaxial transition curve touches with the two
branches of the bulk instability curve. This observation,
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FIG. 1. (a) In the plane of the Flory-Huggins parame-
ter x and the ionic content incorporated into the network,
f, we show what we call the uniaxial transition curve (the
solid curve) on which a uniaxially deformed phase coexists
spatially with an isotropic phase under osmotic equilibrium.
The dashed curve shows the spinodal on which an isotropic
phase in osmotic equilibrium becomes unstable against uniax-
ial deformation. The “hidden” Ising critical point is marked
by the thick dot. (b) A “swallow-tail” shaped manifold in
the space of (f,x,a’), representing the isotropic states in os-
motic equilibrium, where o’ is the free energy per unit mass
of monomers of gel. (c) The uniaxial transition curve (thick
solid curve) and the spinodal curve (thick dashed curve) are
drawn on the same manifold as in (b). The part S1CS2 which
corresponds to unstable states has been lifted out for easier
viewing.
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FIG. 2. The result of model calculation of transition
curves and instability curves. The assignments of the curves
are the same as in Fig. 1(a). The hidden Ising critical point
is at (f,x) = (0.77,1.79) (the thick dot).

as well as the fact that people observed the surface skin
layer [11], leads us to anticipate a crossover of the uniaxial
transition through the bulk instability from an unstable
manifold including the hidden Ising critical point to a
metastable manifold.

We could verify this by studying in the (f, x, @’) space
the manifold representing the isotropic states of the gel
under osmotic equilibrium, i.e., 8{c/ |5, 1 ) }/OA = 0;
see Fig. 1(b). First we briefly explain this “swallow-tail”
shaped manifold. In the region of (f,x), where o’ has
three values, the highest o’ value corresponds to the
unstable state with K < 0 and the remaining two are
metastable ones with K > 0. (As discussed before, the
distinction between metastable and stable is immaterial
in the time domain of our consideration.) The bound-
aries of the unstable manifold, C'S; and CS5, correspond
to the bulk instability (KX = 0). The intersection CB in
Fig. 1(Db) is the so-called “triphasic-equilibrium” [12], the
equilibrium in a rigorous thermodynamic sense among
two isotropic phases and the surrounding solvent. In our
time domain, however, such coexistence can be observed
only in a long rodlike gel [16].

From (1) we note that both the uniaxial transition
curve and the spinodal curve in Fig. 1(a) can be drawn
on the manifold of Fig. 1(b) [17]. They are shown in
Fig. 1(c). There, for ease of viewing, the unstable sub-
manifold S;CS; is lifted above the rest of the manifold.
We see that the whole spinodal curve is on the unstable
manifold, implying that spinodal instability is never at-
tained in our time domain of consideration. On the other
hand, the uniaxial transition curve lies partly on the un-
stable manifold with K < 0 and partly on the metastable
manifolds with K > 0. The vertical thin dotted lines in
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Fig. 1(c) show the location at which this curve “crosses
over” from the metastable manifold to the unstable one
through K = 0.

A numerical calculation was done using the Flory
model free energy, o’ /kgT = v (¢o/®) [(1 — ¢)In(1 —
¢) + x¢(1 — @) + $[2X7+ A= (1 + 2f)In(do/8)],
where the volume fraction of monomers, ¢, is given by
®0/(A%)\;), with ¢o being the volume fraction of the refer-
ence state [12]. v; is the specific volume of solvent, and v
is the number of chains per unit volume of gel in the refer-
ence state. We have chosen the same parameter values as
those having been used to fit the experimental phase dia-
gram of N-isopropylacrylamide (NIPA)/sodium-acrylate
gel in pure water [11,18]: ¢o = 0.07, v; = 3 x 10726¢,
and vy = 1.2 x 1024¢~1, The result is shown in the (f, x)
plane (Fig. 2). Though the portion of smaller x values
is rather crowded, the topological structure of the curves
is the same as that in Fig. 1(a).

We can draw the following predictions from the anal-
ysis above. If the ionic content, f, is not far above the
critical point value, the transition begins without forming
the surface layer of a new phase, since on the metastable
manifold in Fig. 1(b) the state points of a given f do not
meet with the uniaxial transition curve. On the other
hand, for strongly charged polyelectrolyte gel, or for large
enough values of f, the state points of a given f reach the
uniaxial transition curve below the stability limits C'S;
or CS,, and therefore the transition takes place through
the formation of a surface layer of new phase, as it was
observed in [11].

We note that our analysis on the morphology of tran-
sition is not an exhaustive one in the following two as-
pects: the possibility of a surface layer which is nonuni-
form along the lateral direction of the surface and the
possibility of a transition that begins at nonplanar sur-
faces. Concerning the first point, we studied the stabil-
ity of these new phases against the spatial undulation
of the free surface of the gel (buckling instability) [8, 15,

19] , though the details are not shown here. The result
was that, for our chosen parameter values, the shrunken
surface layer that appears from the swollen phase is al-
ways stable against buckling along the uniaxial transition
curve, while the swollen surface layer appearing on the
isotropically shrunken phase is always unstable against
buckling, as experimentally observed [20]. It implies that,
in Fig. 2, the lower part of the transition curve should
be modified toward the larger x values. Near the critical
point, experiments [21] suggest the formation of oblate
dropletlike or needlelike domain on the surface of the
gel. The linear stability analysis does not predict such
domains [8] and, therefore, nonlinear analysis like the one
given above should be done in the future. Also a system-
atic experimental study of the surface morphology of gels
near and/or off the critical point is strongly encouraged.

On the other hand, about the possibility of transition
from nonplanar surfaces, we can generalize qualitatively
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the analysis presented above to the cases where the new
domain is formed on the edges or the vertices of a sample
of gel. (As noted earlier, finite curvature of the sample
surface has no effect on the transition condition.) Let us
assume that a sample of gel has the edges with dihedral
angle © (< m) or the vertices with solid angle Q (< 27).
The transition conditions of such geometries can be for-
mally written. They are in a different form from Egs. (1)
and (2), including © or © as dimensionless parameters.
Since displacements in a sample are less constrained near
these edges or vertices, we expect that the transition of
such a sample begins at these singularities rather than at
a smooth surface of the sample. In this case the transi-
tion temperature should depend on the geometrical pa-
rameters © (or 2). We may expect that these functions
of © or N are the monotonic functions which interpo-
late between the uniaxial transition temperature and the
triphasic-equilibrium temperature mentioned before. For
example, the deswelling transition of a cubic sample of
gel will be observed at a temperature which is between
that of the spherical sample and that of the tetrahedral
sample.

This apparently incredible prediction seems, however,
to explain successfully the following experimental obser-
vation. In the experiment of a thin rodlike gel [16], a
slight change of temperature causes the growth of a sta-
ble phase domain along the rod axis, i.e., from the ends
toward the center of the rod, but no growth was ob-
served in the radial direction, i.e., from the surface to-
wards the axis of the rod. Suppose that a rodlike sample
of NIPA /sodium acrylate gel is first swollen in water un-
til it reaches equilibrium. If, then, the temperature is
raised to above a certain threshold value, the shrinking
transition first begins at the circular edges of the ends of
the rod. (NIPA is a thermoshrinking gel.) Once the tran-
sition takes place, these domains grow towards the cylin-
der axis of the rod until they form almost isotropic do-
mains near the ends of the rod. Since the (rigorous) ther-
modynamic transition temperature must be lower than
the threshold temperature mentioned just before, these
isotropic domains on the ends grow and gradually replace
the isotropic swollen domain in the middle of the rod.
However, on the side surface of the swollen domain, the
formation of a surface layer of shrunken phase is still sup-
pressed, as experimentally observed [16], so long as the
temperature is kept below the uniaxial transition tem-
perature.
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