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We introduce a simple model of quantum percolation and analyze it numerically using transfer matrix
methods. A central point of this paper is that both integer and fractional plateau transitions in the
quantum Hall effect are due to quantum percolation Wit. hin this model, we obtained the localization
length exponent v=2.4 ~ 0.2, the dynamical exponent z = I, and the scaling functions for the conductivi-

ty tensor for both the integer and the fractional transitions. We show that our results agree extremely
well with the experimental results for the integer plateau transition obtained by McEuen et al.
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When a sufficiently clean two-dimensional electron gas
is placed in a strong magnetic field, it exhibits the quan-
tum Hall eAect [1]. In his seminal work [2], Laughlin
identified the ideal states that support this behavior as the
incompressible quantum liquids (or Hall liquids). Recent-
ly, in an attempt to develop a global view of the spin-
polarized quantum Hall effect, Kivelson, Lee, and Zhang
(KLZ) [3(a)] have proposed a schematic phase diagram
which exhibits the interconnection among various Hall
liquids. In this paper, we address the critical properties
of the quantum phase transitions between adjacent quan-
tum Hall liquid phases.

Experimentally, these transitions are manifested as pla-
teau transitions in which, over a narrow interval of mag-
netic field h, B, pzy changes from one quantized value to
another. Following a suggestion of Pruisken [4(a)], Wei
et al. [5(a)] carefully measured dB of the integer plateau
transitions and showed that as T 0, AB a: T" with
x =0.42+ 0.02. From a simple finite-size-scaling anal-
ysis it follows that tc=1/vzT where v is the localization
length exponent and zT (which is conventionally called
2/p [4(a)]) is a thermal exponent which determines the
finite size that cuts off the critical fluctuations. Similar
experiments have also been performed in the fractional
regime [5(b)]. The results showed that tc is the same for
the integer and the fractional plateau transitions and
hence suggest that they belong to the same universality
class. Finally, Koch et al. [5(c)] performed similar
measurements in narrow channels and determined v

(v=2.3 ~ 0.1) directly.
Pruisken et aI. have provided an interesting theoretical

framework for thinking about the integer plateau transi-
tions [4(b)]. More recently, considerable progress in un-

derstanding the integer transitions has been made on the
basis of numerical studies of noninteracting electrons in

the lowest Landau level. In these studies a localization
length exponent v =2.37 ~ 0.13 [6(a)] and universal
critical conductivities [3] cr„'y = (0.5 ~ 0.05)e /h and
o„'„=(0.5 ~ 0.05)e /h [6(b)) were found for a variety of
models with finite-range impurity scattering. It remains
unclear how to generalize these results to include
Coulomb interactions and the fractional quantum Hall

effect.
In this paper, we study a generalized version of the net-

work model of quantum percolation introduced by Chalk-
er and Coddington [7(a)l. Our generalization is to allow
disorder in the strength of quantum tunneling at each
node of the network. We have solved this model numeri-
cally using transfer matrix methods and found v and the
scaling functions for the conductivities. Our values of v

(=2.43 ~ 0.18) and the critical conductivities agree with
the results in Ref. [6]. Since in two dimensions we gen-
erally expect critical conductivities to be universal [8], we

regard both of these results as evidence that all the mod-
els considered are in the same universality class, and that
quantum percolation governs the plateau transitions. A
central point of the present paper is a physical argument
which suggests that all plateau transitions (in the pres-
ence of Coulomb interactions) are due to quantum per-
colation. For Coulomb interactions, we have also ob-
tained the dynamical exponent z =1. Finally, we have
compared our results for the conductivities in the scaling
regime with the available experimental data [9].

We begin by motivating our model of quantum per-
colation. Let us consider a random potential which is

slowly varying on the scale of the magnetic length,

ltt =Jhc/eB, and let us focus on the transition between a

pair of Hall liquids, which we call, respectively, "0"
and "1." By convention we will assign labels so that
o„y ~

& a„y 0. (To have a specific example in mind, one
can consider the case in which a„r o=e /3h and o„y ~

=2e /5h. ) Let us approach the transition from the "1"
side so that in real space, the system consists of droplets
of the "0" Hall liquid immersed in a background of the
"l." (In the presence of Coulomb interaction, one should
not think of the "0" and "1" regions as having very
different densities; the constraint of charge neutrality on
moderate length scales implies that the "1" regions are
littered with localized quasiholes and the "0"regions with
localized quasiparticles. ) As we change the chemical po-
tential, each of the "0"droplets will expand or contract.
The smallest unit of charge that can be transferred to a
"0"droplet is e*, the charge of the quasiholes in the "1"
liquid (e.g. e* =e/5 in the specific example discussed
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above). An added quasihole wave packet propagates
along the boundary of the "0" droplet in one direction
only, with a velocity proportional in magnitude to the
gradient of the potential. At low temperatures, the dissi-
pative component of the magnetotransport is completely
determined by the propagation of these edge quasiholes.
The localization length g is given by the size of the larg-
est typical droplet. At a fixed density when the magnetic
field is low, the "0" Hall droplets are far separated. In
that case, all boundaries are finite and the system is ma-
croscopically a "1" Hall liquid. As one increases the
magnetic field, the "0" Hall droplets gradually merge.
When 8 & 8„ the "0" Hall droplets percolate, and ma-
croscopically the system becomes a "0"Hall liquid.

We now consider the process by which the localization
length diverges as 8 8,. If we ignore quantum tunnel-
ing of quasiholes, this is a classical percolation problem.
As discussed by Trugman [10] the localization length
diverges as (—~B —B, ~

', with v, =
3 . In reality,

quantum tunneling is important whenever the edges of
two droplets get close together (i.e., near a saddle point)

To study quantum percolation we consider a square
lattice of saddle points [11], as shown schematically in

Fig. 1, in which the areas marked with "0" and "1"rep-
resent the regions occupied by the "0" and "1" Hall
liquids, respectively, the squares enclose the saddle points,
and the arrows indicate the direction of propagation of
the quasiholes. Each saddle point has two incoming and
two outgoing edges. Let Zi and Z2 denote the incoming
and Z3 and Z4 denote the outgoing quasihole probability
amplitudes at a single vertex. The quantum tunneling at
the saddle point can be summarized by the following ma-
trix equation [7(a)]:

'll (
Zi e' ' 0 coshy sinhy p ' 0 Z4

Z3 0 p
&2 sinhy coshy 0 ~'&4 Z2 (1)

where P s account for the random phases of Z; at the
saddle point and y characterizes the amount of quantum
tunneling. The specific form of the matrix in Eq. (1) is
dictated by the requirement of current conservator'on, i.e.,
IZil'+I»l'=IZ3I'+IZ4I' [7(a)]. Classical behavior
is recovered in the limits y 0, where (1 4, 2 3)

0 „&, 0
~ 0

4

0 " 1
'~

0

~ 4

0 ii ]

] ii 0 1 0
0

~ 0

0 If

FIG. 1. View of the lattice model of quantum percolation.
The dashed curves indicate the direction of propagation in the
classical limit when y=0 at all saddle points.

with probability unity, and y ~ where (1 3, 2 4).
The "most quantum mechanical" behavior is realized
when y=y, =ln(1+ J2) where an incoming particle on I

(or 2) has equal probability to be scattered to 3 or 4. The
value of y is given by y(p) =y, exp(p —V), where p is
the dimensionless chemical potential, and V is a dimen-
sionless random potential distributed in the interval
( —w/2, w/2). For finite p, if we let W ~, y assumes
finite nonzero values with vanishing probability, and
hence classical percolation is recovered. Using the matrix
in Eq. (1) as the building block we construct the transfer
matrix T for a network consisting of (M x L) saddle
points with periodic boundary conditions applied in the
M direction. For large enough L the system is self-
averaging [7(a)], and the localization length (M(p) is
given by gM'(p) =ln(~lp(M, L,p)~)/L, where kp is the
smallest eigenvalue of T that has (Xp~ ~ 1.

In the presence of Coulomb interactions, there exists a
Lee-Rice length scale g«„above which the induced posi-
tional (i.e. , Wigner crystal) correlations are negligible.
Above g«„we can replace the bare random potential by
a renormalized one that incorporates the eAects of collec-
tive pinning. A second, more fundamental eAect of the
Coulomb interactions is that it fixes the lowest neutral
excitation energy to be Ep = e /e( for an edge
quasiparticle-quasihole pair. As a result, the dynamical
exponent z =1. Coulomb interactions also introduce the
possibility of inelastic tunneling in which a quasiparticle-
quasihole pair is created when a quasihole tunnels across
a saddle point. If we consider the propagation of a
quasihole wave packet with energy within Ep of p, such
incoherent processes can be ignored. In that case, the
quasihole propagates through the network coherently as
described above. At higher energies, inelastic processes
will indeed destroy the coherence. Equivalently, only
below a characteristic temperature, Tp =Ep/kg, will the
coherent, zero-temperature physics determine the magne-
totransport. The implication is that the thermal width
of plateau transitions is determined by the condition
T =Tp(B) (i.e., K = 1/zv), and hence zT =z = 1, and
rc=v ' =0.42 [12]. We stress that none of the eA'ects of
these interactions fundamentally alter the nature of the
quantum percolation problem; in all cases, the plateau
transition is driven by the delocalization of the edge
quasiholes with energy p. Interactions can aAect the
internal structure of the quasihole, and in the case of the
fractional eAect they can determine the charge and statis-
tics of the quasihole, but they do not aAect the character
of the transition.

Now we present our numerical results. To demonstrate
how quantum tunneling changes v, we first set W
and consider the classical problem. We have calculated
gM in a cylinder with L =2X 10 and M=8 128 [13].
According to finite-size scaling, when L))M, (M is given
by (M(p)/M=F(g /M), where g (p) is the thermo-
dynamic localization length, and F(x) is a scaling func-
tion. In Fig. 2 we present the scaling plot and 1n(g ) vs
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FIG. 2. The scaling plot for classical percolation. Inset:
]n( vs lnp.

FIG. 3. The scaling plot for quantum percolation. Inset:
]n( vs lnp.

tanh yeff

From Eq. (2) we obtain the quasihole transmission
coefticient T =cosh y, ff and the reflection coe%cient

]n(p). From these results, we obtained v=1.29~0.05
consistent with the known classical percolation exponent
v, =

3 . Next we set 8'=1 and study the full quantum
problem. In Fig. 3 we present the scaling plot and ]n(g )
vs In(p). The quantum exponent we deduced from these
results is v=2.43+ 0.18, which is, within the error bars,
consistent with v= 3, the value that has been conjec-
tured in [7(b)]. We have also studied several other
values of 8' and found the same value for v within nu-
merical uncertainty.

To calculate the conductivities let us imagine a two-
terminal geometry where a MXM network with periodic
boundary conditions in the transverse direction is bound-
ed on the left and right by two ideal "1"Hall liquids. In
each of the ideal "leads" there is one incoming and one
outgoing edge channel which is scattered by the "sample"
in between. Because of current conservation, the efrective
transfer matrix characterizing the sample is a 2 X 2 ma-
trix in the form of Eq. (1), where P; and y are replaced
by some yet unknown values p;,p and y,p. To determine

ff and y, ir, let us imagine diagonalizing the M x M
transfer matrix and taking the modulus of the resulting
eigenvalues. Among the mutual-reciprocal pairs let us
single out the one (IkpI, IkpI ') (we assume IkpI & 1)
where IkpI is closest to unity.

The relation between IkpI and y,p. is given by
]n(IkpI) =(M/(br) =y,a. The resulting eA'ective transfer
matrix can then be used to obtain a scattering matrix that
links the incoming amplitudes (Zi and Z2) with the out-
going amplitudes (Z4 and Z3). Under an appropriate
choice of gauge the phases p;,a. can be absorbed and the
S matrix takes the following form:

tanh y, ff
—cosh '

y, ffS= (2)cosh yeff

R =tanh yeff. From T and R we can compute the con-
ductivity tensor in a Landauer-type approach. If all pla-
teau transitions are governed by quasihole percolation,
then T and R must assume universal scaling forms near
the critical point. As a result, the following scaling rela-
tions connect the magnetotransport data of any pair (say
a, b) of plateau transitions: Under conditions of fixed
quasihole current I = lb/eb* =I,/e,*,

eb*VH b =e,*VH,, +h(0b —0, )I, eb*VL b =e,*Vq, . (3)

h R I h
Pxx =

~2 ~ Pxy
=q q g

e
(4)

By inverting the quasihole resistivity tensor we can com-
pute the corresponding conductivities o.q" and o.

y The
total conductivity tensor is given by o. =o „" and o y

In the above, I„VH „and VL, are the quasihole electri-
cal current, Hall voltage, and longitudinal voltage of the
ath transition, respectively; e,* and 0, are the charge and
statistics [14] of the quasiholes that quantum percolate in
the ath transition. To appreciate the physical origin of
Eq. (3) we represent the quasihole associated with transi-
tion b as a particle with the statistics of the quasihole of
transition a, with Ob

—0, quanta of statistical flux at-
tached to it to correct the statistics. Since the density
operator is invariant under the operation of flux attach-
ment, the transmission/reflection coefficient and the num-
ber current are independent of this flux. However, the as-
sociated flux current generates a perpendicular EMF,
which makes an additive contribution to the eAective Hall
voltage [15] equal to Planck's constant times the flux
current, (Ob —8, )I. Therefore, if we choose a to be a
reference integer plateau transition and use the Landauer
formula p„„=(h/e )R/T and p„z =(h/e ) to obtain the
corresponding fermionic resistivity tensor [16], we obtain
the following results for the resistivities of the anyons in
transition b (we have dropped the subscript "b"):
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and the third integer Hall plateaus [9]. The dashed line
in Fig. 4 is the data of McEuen et al. plotted as o „vs
1n(~B —B, ~

t ); in making the comparison with the ex-
perimental data, we have identified g (p)/M=(~B

B,—~/B o) t, where Bo is the only adjustable parame-
ter. The agreement with the data of McEuen et al.
confirms that both the exponent and the critical conduc-
tivity are determined by quantum percolation.
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FIG. 4. The scaling plot for a„. The dashed line is the ex-
perimental result of McEuen et al. [9] plotted using the ex-
ponent v= —, . Inset: g /sMtvs tt. The open circle on the p =0
axis marks the position of y, '.

=(e /h)(S„y —crvy"). Here (e /h)S„~ is the Hall con-
ductivity of the "1"Hall liquid. Putting everything to-
gether we get finally

e*2 sinh yp
1+0 sinh y, ff

(5)
2 e*2 sinh

o. = 5„—0 1+g2sinh4

where we have used R/T=sinh y, ir. Equation (5) is in

complete agreement with the result obtained by KLZ
using the Chem-Simons approach [3]. We identify
sinh y, ir in this work with the o„„ in Eq. (23) of Ref.
[3(a)]. As y, tr increases from 0 to ~ the conductivity
tensor evolves from o„~ =S„ye /h and cr „=0 to tT„~

=S„ye /h —e* /h8, cr„„=0. At the critical point y, ir

=M/(st y, =ln(1+ J2) (see the inset of Fig. 4) and
the critical conductivities can be obtained from Eq. (5)
by setting sinhy, p=l. For the integer quantum Hall
eff'ect 0=1, e* =e and 5 ~=integer. In that case it fol-
lows that cr„'„=e /2h and cr„'~ =(n —1/2)e /h in agree-
ment with [3(a)]. (Note also, as shown in KLZ, if we

approach the transition from the other side in which we
study the quantum percolation of the quasielectrons of
the "0" Hall liquid, the same values of the critical con-
ductivities are obtained. )

Away from the critical point, y,tr=M/(st shows scal-
ing behavior as a function of g /M (Fig. 3) and the cor-
responding cr„„vs ]n(g /M) for the integer quantum
Hall effect is shown in Fig. 4. Therefore, o.„should ex-
hibit a universal scaling form in the transition region be-
tween quantized Hall plateaus. Extracting a. from ex-
perimental data has to be performed with extreme care so
that the edge current contribution from the parent ("0")
Hall liquid is subtracted off. Such an analysis was done
by McEuen et al. for the transition between the second
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