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Brownian-Motion Model for Parametric Correlations
in the Spectra of Disordered Metals
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We study the response to an external perturbation of the energy levels of a disordered metallic
particle, by means of the Brownian-motion model introduced by Dyson in the theory of random
matrices, and reproduce the results of a recent microscopic theory [A. Szafer and B. L. Altshuler,
Phys. Rev. Lett. 70, 587 (1993)]. This establishes the validity of Dyson s basic assumption, that
parametric correlations in the energy spectrum are dominated by "level repulsion, " and therefore
solely dependent on the symmetry of the Hamiltonian.
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In 1965, Gorkov and Eliashberg [1] proposed to de-
scribe the electronic excitation spectrum of small metal-
lic particles in terms of the Wigner-Dyson theory for the
statistical properties of the eigenvalues of random Her-
mitian matrices. The basic assumption of this random-
matrix theory (RMT) is that the spectral correlations are
dominated by level repulsion [2]. Level repulsion is a di-
rect consequence of the transformation from the space of
N x N matrices 'Pt to the smaller space of N eigenvalues
E,. Level repulsion is "universal" in the sense that it is
fully determined by the symmetry class of the Hamilto-
nian ensemble. There exist just three symmetry classes,
characterized by the index P: P = 1 in zero magnetic
field (orthogonal ensemble), P = 2 in nonzero field (uni-
tary ensemble), and P = 4 for strong spin-orbit scattering
in zero magnetic field (symplectic ensemble) [3,4].

It was not until twenty years later that the basic as-
sumption of RMT was justified by a microscopic the-
ory, by Efetov [5] and by Altshuler and Shklovskii [6].
These authors showed that the correlation function of
pairs of energy levels agrees with RMT for level separa-
tions 6E up to the Thouless energy E, hvzl/Lz (where
L is the diameter of the particle, v~ the Fermi velocity,
and the mean free path l is « L). In the energy range
6 « 6E « E, (with 6 the mean level spacing) the pair
correlation function is universal, i.e. , independent of the
particle size or the degree of disorder. Only the symme-
try inde~ P remains as a relevant parameter.

In a recent publication [7], Szafer and Altshuler have
used the diagrammatic perturbation theory of Ref. [6] to
study the response of the energy levels to an external
perturbation. They considered a metallic particle with
the topology of a ring, enclosing a magnetic flux P (mea-
sured in units of h/e). The energy levels E,(P) depend
parametrically on P. Their dispersion is characterized by
the "current density"

Szafer and Altshuler found that the correlation function

becomes universal for bE = 0 and (6/E, ) / « 6'P « 1:

C(O, X) = —2/ir PX, (3)

with P = 2 and X = 6P.
Equation (3) was proven for the case that the ran-

domness in the energy spectrum is due to scattering by
randomly located impurities. [The overline in Eq. (2)
then denotes an average over the impurity configura-
tions. ] Numerical simulations indicated that it applies
generically to chaotic systems, even if there is no dis-
order and all randomness comes from scattering at ir-
regularly shaped boundaries [7]. (The average in that
case is taken over E and P.) Further work on disordered
systems by Simons and Altshuler [8], based on the non-
perturbative supersymmetry formalism of Ref. [5], has
shown that Eq. (3) with P = 1 and X = 6U applies if the
external perturbation is a spatially fluctuating electro-
static potential U, (r). The correlator (3) thus provides
a universal quantum mechanical characterization of the
response of a chaotic system to an external magnetic or
electric field, including such diverse applications as nu-
clear deformation, chaotic billiards, persistent currents
in an Aharonov-Bohm ring, and dispersion relations of
complex crystalline lattices [7,8].

Such universality suggests that it should be possible
to derive Eq. (3) from the basic assumption of RMT,
that spectral correlations are due to level repulsion and
therefore fully determined by symmetry. The purpose of
this paper is to show how this can be achieved.

The starting point of our analysis is Dyson s Brownian-
motion model [9] for the evolution of an ensemble of
N x N random matrices as a function of an external
parameter w. Dyson's idea was to regard w as a fictitious
"time, " and to model the ~ dependence of the distribu-
tion of energy levels P((E„j,r) by the one-dimensional
Brownian motion of N classical particles at positions
E,(r), in a fictitious viscous fiuid with friction coefficient
p and temperature P i. Level repulsion is accounted for
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by the interaction potential —ln IE —E'I between par-
ticles at E and E'. The particles move in a confining
potential V(E), which is determined by the density of
states (assumed to be independent of r)

The fictitious time 7. needs still to be related to the
perturbation parameter X in the Harniltonian 'H(X) of
the physical system one is modeling. Let ~ = 0 coincide
with X = 0, so that

P((z„),0) = S(z, —Z,'), (4)

with Eo the eigenvalues of 'R(0). For r ) 0 we then
identify

~=X . (5)
This is the simplest relation between r and X which is
consistent with the initial rate of change of the energy
levels: On the one hand, [E,(X) —Eo]z = X2(dE;/dX)2
is of order X for small X, while on the other hand the
ensemble average ([E,(7) —Eo]z) = 2r/Pp is of order r
for small r [9]. For later use we also note the relation

2/Pp = (dz;/dX)2

between the friction coefficient and the mean-square rate
of change of the energy levels, which is implied by the
identification (5).

With these definitions, P((E„),r) evolves according
to the N-dimensional difFusion equation [9]

BP . B i ( BW iBP'i
Br Bzi l Bzi Bzi )

w((E„)) = -)»Iz; —E,I+) v(z, ). (7b) p(z r) =
OO N

dEi dzg P((E„),r) ) 6(E —E,).

where Z is such that P,~ is normalized to unity. Equation
(8), for P = 1, 2, and 4, is the eigenvalue distribution in
the orthogonal, unitary, and symplectic ensemble [4].

Equation (7) is the simplest description of the Brown-
ian motion of the energy levels which is consistent with
the equilibrium distribution (8). It is not the most gen-
eral description: (1) One could include the "velocities"
dz„/dr as independent stochastic variables, and work
with a 2N-dimensional diffusion equation. Instead, in
the Brownian-motion model the finite relaxation time
r, (specified below) of the velocities is ignored. This
restricts the applicability to parameter ranges ("time
scales" ) greater than r, . (2) One could let p be a matrix
function p,~((E„J)of the configuration of energy levels.
Such a configuration dependence (known in fluids as hy-
drodynamic interaction) would be an additional source
of correlations, which is ignored. That is the basic as-
sumption of Dyson's Brownian-motion model, that the
spectral correlations are dominated by the fundamental
geometric effect of level repulsion. The Brownian-motion
model is known to provide a rigorous description of the
transition between random-matrix ensembles of diferent
symmetry [10]. However, there exists no derivation of
Eq. (7) from a microscopic Hamiltonian. Here we apply
the Brownian-motion model to fluctuations around equi-
librium in the random-matrix ensembles (8), and show
that there is a complete agreement with the microscopic
theory for disordered metals by Szafer and Altshuler [7].

The first step in the analysis is to reduce Eq. (7) to an
evolution equation for the average density of eigenvalues

Equation (7) has the r —+ oo ("equilibrium" ) solution

P"((E-j) =Z 'e (8) This problem was solved by Dyson [9] in the limit N ~
oo, with the result

&B p(z r) =
BZ p(z r) B I

&(E)—
B B B ( dz' p(z', r)» Iz —E'I

I
(10)

dE' p, (E') ln IE —E'I
I
= 0. (11)E IV(z)—

The next step is to reduce Eq. (10) to a difFusion equation
by linearizing p around p,z. We write p(E, r) = p,q(E) +
bp(E, r) and find, to first order in bp,

~A:&D(z)D(k) =

Corrections to Eq. (10) are smaller by an order
ln ¹ To the same order, p,~(E) satisfies [9] tion, with diffusion kernel D(E, E ).

To proceed we assume a constant density of states over
B the energy range of interest, p,q(E) = po = 1/&.

B —OO diffusion kernel then becomes translationally invariant,
D(z, E') = D(E —E'), with Fourier transform

B
~p(z r) =

Bz
B B dE' D(E,E'), 6p(E', r), Equation (12) becomes an ordinary difFerential equation

in A: space, with solution
(12)

D(E, E') = pp, q(E) ln IE ——E'I.

Equation (12) has the form of a nonlocal diffusion equa-

6p(k, r) = 6p(k, 0) exp[ —k D(k)r].
In view of Eq. (4), the initial condition on the eigen-

value density is
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p(E, 0) = ) 6(E —Eo).

We define the equilibrium average (f),q of an arbitrary
function f((E„))of the initial configuration by

In the case of a constant density of states, the correlation
functions S(E,E', r) —= S(E —E', r) and K(E, E')
K(E —E ) are translationally invariant, with Fourier
transforms S(k, r) and K(k). According to Eqs. (14),
(17), and (18), we have

(f).~ = ~ ~ ~
0 dE' &. ((E'))f((E'j) (16) S(k, r) = 2~po 6(k) —K(k) exp[ —k D(k)r]. (19)

The density-density correlation function S(E,E, r) is
defined by

S(E,E', r) = (p(E, r)p(E', 0)),~
= (~p(E r)~p(E' 0)).q+ p.q(E)p.~(E')

K(k) = [ki/7—rp, (20)

independent of V(E) [ll]. Combining Eqs. (13), (19),
and (20), we conclude that

The function K(k) is known from RMT [4]. In the limit
N ~ oo, one has asymptotically

where we have used that (p(E, r))eq—:p~q(E). The pair
correlation function K(E, E') is related to S(E,E', 0) by

S(k r) = ~po 6(k) + exp( 7rpolklrlp). (21)

We are now ready to make the connection with the
universal correlator (3). We define the correlation func-
tions

S(E,X,E', X') = ) b(E —E,(X))P(E E,(X )), (22)

C(E, X, E', X') = ) E,(X)E~(X')6(E— E( X))b( E' —E~(X')), (23)

Translational invariance reduces C and S to functions
C(E —E', X —X') and S(E —E', X' —X') of the energy
and parameter increments only. Relation (24) becomes,
upon Fourier transformation of the energy variable,

1 0
C(k, X) = —— S(k, X). (25)

The correlation functions S(k, X) and C(k, X) follow
from Eqs. (5), (21), and (25),

S(k, X) = 2+po 6(k) + exp( —( [k~), (26)

C(k, X) = (1 —2( [k~) exp( —( ~k[),
Pv

where E, = dE, /dX. By definition,

02 a2
, C(E, X, E', X')=,S(E,X,E', X'). (2 )

2
C(O, X) = ln[X[

2
, ifXQO, (3o)

independent of the microscopic parameters pp and p.
Equation (30), obtained here from random-matrix the-
ory, is preciseLy the universal correlator (3) which Szafer
and Altshuler [7] derived from diagrammatic perturba-
tion theory. This is the fundamental result of Dyson's
Brownian-motion model, which we now discuss in some
more detail.

At X = 0, C(0, X) has an integrable singularity con-
sisting of a positive peak such that the integral over all
X vanishes. This is a special case of the general sum rule

fo dX'C(E, X) = 0, which follows from Eq. (24). The
peak of positive correlation has infinitesimal width in the
Brownian-motion model. In reality the peak has a finite

width X, —:~w, and a finite height C(0, 0) poE, = Co.
The width and height are related by

where we have abbreviated ( = X(vapo/p) ~ . The E
space correlation functions become

Cpx, C(O, X) dX 1/X, m Co 1/X, .

C(E, X') =

S(E,X) = po+ ln(( +E ),2~z BEz
82

ln(( + E ). (29)

In terms of the generalized Thouless energy [8]

~. = Co/po = poE,', (31)

In the limit E —+ 0, Eq. (29) reduces to
we obtain the estimate X, = (poF, ) ~ . In Ref. [7] the

parameter X is the magnetic flux increment in units of
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h/e. Then F., is the conventional Thouless energy E,
[12], related to the conductance g (in units of e~/h) by
g poE, . The Aharonov-Bohm periodicity implies in
this case the additional restriction X « 1 to Eq. (30)
(which is compatible with the condition X )) X, because
X, g ii~

&& 1 in the metallic regime).
We have shown that the E ~ 0 limit of C(E, X) ob-

tained from RMT agrees with the microscopic theory.
What about nonzero energy differences? This is most
easily discussed in terms of the density-density correla-
tion function S(E,X), to which C(E, X) is directly re-
lated via Eq. (25). Using Eqs. (6) and (31) we find that
the result (28) can be rewritten identically as

dence [11].This suggests that the analog of the universal
correlator (3) exists as well for the transmission eigen-
values. Finally, the results of this paper and of Ref. [14]
taken together imply a correspondence between Dyson's
Brownian-motion model and the Sutherland Hamiltonian
[15], which remains to be fully understood.

My interest in this topic was raised by a seminar of B.
L. Altshuler at the Mittag-LefHer Institute (Djursholm,
Sweden), the hospitality of which is gratefully acknowl-
edged. I thank B. L. Altshuler and B. D. Simons for
sharing their unpublished results with me, and for valu-
able correspondence. This work was supported in part
by the Dutch Science Foundation NWO/FOM.

which coincides precisely with the result of diagrammatic
perturbation theory [7,8].

This establishes the validity of Dyson s Brownian-
motion model for parametric correlations in the spectra
of disordered metals, and places it on the same footing
as the Wigner-Dyson theory for parameter-independent
correlations.

We conclude by identifying some directions for future
research. The restriction X )) X, (or, equivalently,
r )) r, ) of the Brownian-motion model might be relaxed

by introducing the derivatives dE, /dr as independent
stochastic variables in a 2N-dimensional diffusion equa-
tion. It would be interesting to see if one could in this way
reproduce the small-X results of the microscopic theory
[8]. The Brownian-motion model might also be extended
to a parameter vector X„(p, = 1, 2, . . . , d), relevant for
a statistical description of the dispersion relation of a d-

dirnensional crystalline lattice [8]. The Brownian motion
would then take place in a fictitious world with multiple
temporal dimensions ~&. An altogether diferent line of
research would be to apply the Brownian-motion model
to the response of the transmission eigenvatues T, to an
external perturbation. The analog of level repulsion for
the transmission eigenvalues is known [13],and leads to a
pair correlation function K(T, T ) which differs from Eq.
(20) for K(E, E') but has the same universal P depen-
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