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Quantized Periodic Orbits in Large Antidot Arrays
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The resistivity p measured in large antidot arrays as a function of an applied perpendicular
magnetic field B displays distinct quantum oscillations at very low temperatures. These oscillations
characteristically differ from conventional Shubnikov —de Haas oscillations which are periodic in 1/B
A crossover to B periodic oscillations at low B discloses the influence of the imposed potential.
Applying semiclassical periodic orbit theory to the nonintegrable (chaotic) electron motion in the
antidot lattice we attribute these phenomena to the quantization of few fundamental periodic orbits.

PACS numbers: 73.20.Dx, 03.65.Sq, 05.45.+b, 73.50.Jt

Magnetoresistance oscillations in mesoscopic conduc-
tors, periodic in B, are usually considered a manifesta-
tion of the Aharanov-Bohrn (AB) eff'ect [1]. A magnetic
flux O' = BA threaded through a loop smaller than the
phase coherence length lc, alters the phase of the elec-
trons passing along either side, so that the resistance is
modulated by the interference of the phase-shifted wave
functions. The oscillations are periodic in (h/e)A and
reflect the successive addition of one flux quantum h/e
through the loop area A. To observe (h/e)A periodic
oscillations in multiple connected rings [2] the electron
wave function needs to be coherent across the entire ar-
ray. Antidot superlattices [3] consisting of a periodic ar-
ray of holes "drilled" through a two-dimensional electron
gas (2DEG) are closely related to such a large, multiply
connected ring geometry. In the past, B periodic features
in the resistivity of lateral superlattices [4—6] have been
ascribed to the AB effect [4,6]. In this Letter we show
that B periodic oscillations which we observe in antidot
arrays with dimensions large compared to lc, result from
a modified electron energy spectrum. We find that the
spectrum is dominated by few quantized periodic orbits.
In contrast to the AB effect this latter mechanism re-
quires phase coherence only on a length scale given by
the circumference of the cyclotron orbit but not across
the entire lattice.

We fabricate antidot arrays from high-mobility GaAs-
AlGaAs heterojunctions which, at 4 2 K, have car-
rier densities n, (1.4—2.8)x10~~cm 2 and mobilities p

(0.5—1.2) x10s cm2/Vs. A periodic (square) array of
holes with period a = 200 nm or 300 nm is defined
by electron beam lithography on top of a 100 p,m wide
Hall bar [Fig. 1(a), inset] and transferred into the 2DEG
by dry etching [7]. These antidots, forming impenetra-
ble barriers for the electrons, are characterized by their
(normalized) cross section d = d/a and the steepness of
the imposed repulsive potential which depends on the
lithographic diameter, and the depletion region around
the holes. The electron mean free path in our devices,

m'v~p, /e, is 3 to 10 atm and is comparable to
the phase coherence length /y [8]. Here, m' is the elec-
tron efFective mass, and v~ the Fermi velocity. Although
S„Sc,)) a, the antidot array is mocroscopic; its dimen-
sions are large compared to 8@ and E, .

Recent experiments in antidot arrays unveiled a se-
ries of low B resistance peaks at commensurate B, for
which the classical cyclotron orbit with radius B,
h(27m, ) /z/eB encompasses a particular number of an-
tidots [5,9]. While the basic mechanisms can be under-
stood in a simple circular orbit analysis [5] a detailed de-
scription of the transport anomalies involves the peculiar
electron dynamics in an antidot potential landscape: the
p anomalies stem from electrons trapped on classically
chaotic trajectories for commensurate B [10].

Here, we explore transport anomalies in a tempera-
ture regime where the quantization of nonintegrable elec-
tron motion comes into play. Measurements of p at
T 0.4 K display quantum oscillations superimposed
upon the low B resistance anomalies. Corresponding
data for a sample with large d 0.5 [11] are shown in
Fig. 1(a) where we compare p from both patterned and
unpatterned sample segments. In the unpatterned part,
1/B periodic Shubnikov —de Haas (SdH) oscillations re-
Hect the Landau energy spectrum. The quantum oscilla-
tions in the antidot segment reveal quite difFerent behav-
ior [12]. The oscillations are periodic in B with period
AB 0.105 T h/ea corresponding to the addition of
approximately one flux quantum through the antidot unit
cell [Fig. 1(b)]. At 4.7 K, the quantum oscillations are
smeared out while the characteristic p peak at 2R, = a,
attributed to trapped electrons whirling around one an-
tidot, persists. The oscillations periodic in B dominate
only the low B regime (2R, ) a —d); at high B, the sam-
ple behaves as if unpatterned, and p displays minima
which are 1/B periodic reflecting quantization of essen-
tially unperturbed cyclotron orbits [Fig. 1(a), left inset].
In Fig. 1(c) we plot the oscillation index rl for both the
high and low field regimes versus inverse magnetic field
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in 2DEG systems) at E, B values satisfying the quanti-
zation condition

S(E,B) = 2irh[n+ (k+ ')p-(E, B) + -'cr] .

In Eq. (1), n counts the number of nodes of an associ-
ated wave function along the stable periodic orbit, and k
labels quantized vibrational motion with frequency p per-
pendicular to the orbit [19,20]. Here we use A: = 0. Un

stable periodic orbits give rise to modulations in d(E, B),
usually not related to individual quantum states [16].
For those, p = 0 holds, and Eq. (1) describes maxima
in the d(E, B) modulation. Equation (1) implies that
adjacent maxima are spaced by AB = B„—B„
27rh/(BS/BB) Gen. erally, OS/BB is large for long pe-
riodic orbits causing high frequency oscillations (small
AB), not resolved experimentally. In contrast, short
(fundamental) periodic orbits result in a low frequency
oscillation of d(E, B); it turns out that only a few of these
dominate the spectrum [18].

To find the relevant periodic orbits, we first study the
electron dynamics in a model antidot array. Following
recent work by Fleischrnann, Geisel, and Ketzrnerick [10]
we use the Hamiltonian

H=es = (p —eA) +LTq sic{ )sic{ )

and solve the corresponding classical equations of motion
at fixed Fermi energy e~. Here, A is the vector potential.
After normalizing energies and lengths in Eq. (2) by e~
and a, respectively (without changing the notation), we

adjust the eff'ective antidot diameter d at e~ ——1 by the
(now dimensionless) prefactor Uo while P controls the
steepness of the potential.

After integrating the Hamiltonian equations of motion
numerically, we search for periodic orbits, and calculate
their actions

S'(B) = $(ee'v+ eA)de = ee*$vde —eBA(B), (3)

and stability indices (Liapunov exponents or winding
numbers p). BA(B) in Eq. (3) is the enclosed flux
through a periodic orbit and v is the electron velocity.
To compare with experiment we calculate the reduced
action S(B)

S(B)—:2 —p(B) ———1 = 2n; n = 1, 2, ... , (4)
S(B) 0!

2

where 2n now labels minima in d(E, B). Note that the
y axis of Figs. 1(c) and 2 represents S, where even il are
described by Eq. (4). At high B, 2n is the filling factor
v [21]. Calculated traces of S(B) are shown in Figs. 1(c)
and 2. Three periodic orbits, displayed in the insets of
Fig. 1(c), are sufncient to explain the minima positions of
p . These are (i) an orbit betu)een four antidots, denoted

as (a), (ii) an orbit around one antidot (b), and (iii) or-
bit (c) emerging from a bifurcation of orbit (b). All other
periodic orbits investigated play only minor roles: their
c)S/c)B is either too small (orbit bouncing between two
antidots) or too large (longer periodic orbits). The S(B)
curves in Fig. 1(c) and Fig. 2 differ in their model pa-

rameters; we use P = 2 and d = 0.5 for the solid, dashed,
and dotted lines in Fig. 1(c) and P = 4 and d = 0.4 for

the traces in Fig. 2. Since d values are taken from the
experiment [ll] P is the only free parameter.

The calculated S(B) traces in Fig. 1(c) and Fig. 2

closely follow the experiment and highlight the dominant
role of the orbits (ag, (b), and (c) [22]. The magnetic
field dependence of S(B) can be explained in a simplified
approach evaluating the B dependence of the enclosed
area A. For unperturbed cyclotron motion S(B) = eBA
holds, A(B) = 7rR2 scales with 1/B2, and 1/B peri-
odic resistance oscillations result. At high B, orbit (a)
is essentially unperturbed and in this realm oscillations
periodic in 1/B are prominent in Figs. 1(c) and 2. At

lower B where 2A, is comparable to the period a, an
essentially unperturbed cyclotron motion requires a suf-
ficiently "open" antidot lattice (small d, large P). 1/B
periodic oscillations between 1/B = 1.3 T i and 2.5
T in Fig. 2 document such behavior. Deviations from

A(B) oc 1/B~ destroy the 1/B periodicity: smaller ac-
tion is caused by impeding the expansion of a cyclotron
orbit. B periodic oscillations result when A is indepen-
dent of B. This condition is closely fulfilled by orbit (b)
calculated for P = 2, d = 0.5 and shown in the bottom
inset of Fig. 1(c). This trajectory encloses an area a~

causing the B periodic oscillations with AB = 6/ea2
displayed in Fig. 1(b).

At low B, the system is nearly completely chaotic for

P = 2 and d = 0.5: the periodic orbits (a), (b), and

(c) in Fig. 1(c) get unstable for B smaller than 0.6 T,
2.5 T, and 0.8 T, respectively. Why are the oscillations
in p determined by few periodic orbits with negligible
volume in phase space? To obtain a picture of the classi-
cal phase space we trace classical trajectories, in general
nonperiodic, starting normal to the Poincare surface of
section (boldface part of the diagonal in Fig. 3 inset). We
integrate their normalized action S(B) = S(B)jeBrrR2
until the electron traverses the diagonal for the second
time. S(B) is visualized in a grey scale plot and shown
as a function of 1/B and the electron starting position.
Areas with rapidly changing 8 intersect regions with
smoothly varying action. Solid lines in Fig. 3 mark the
positions of the periodic orbits (a), (b), and (c) which
minimize the action functional S. The plot suggests
that these orbits represent the classical nonperiodic mo-
tion in the extended regions of smoothly varying action.
More specifically, by using the quantization condition Eq.
(1) we implicitly performed a harmonic expansion of the
action functional around the periodic orbits for nearby
closed paths. Corresponding calculations show [23] that
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FIG. 3. Inset: Fundamental periodic orbits (a), (b), and

(c) starting normal from the boldface segment of the diagonal.
A nonperiodic, chaotic trajectory is shown as a dashed line.
Parameters are a = 200 nm, 1/B = 0.74 T ', d = 0.5, and

P = 2. The grey scale plot shows the normalized action for all
trajectories starting from the diagonal segment as a function
of 1/B and initial positions between —1 (lower left) and 1

(upper right). Maximum action: white. Minimum action:
black. The initial conditions for the periodic orbits depicted
in the inset are indicated by solid lines,

the harmonic approximation holds for large parts of the
phase space around the orbits (a), (b), and (c) and hence
explains their significance for the quantum oscillations
reported here [24].
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