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Dynamic Conductance and the Scattering Matrix of Small Conductors
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The current response to oscillating electric or magnetic fields acting on the carriers in the probes of
a multichannel, multilead conductor is investigated. For a noninteracting system we find a frequency-
dependent admittance matrix which is expressed in terms of scattering matrices. A self-consistent
potential method is used to include Coulomb interactions. The low-frequency departure of the
admittance away from the dc conductance is discussed in terms of phase-delay times and RC times.

PACS numbers: 72.10.Bg, 72.30.+q, 72.70.+m, 73.50.Td

Expressions which relate the dc conductance of a con-
ductor to the scattering matrix have become useful tools
for the investigation of phase-coherent electron transport
[1, 2]. Departures from the steady state occur sponta-
neously and lead to the need to investigate the noise
properties of the conductor [3, 4]. Alternatively the con-
ductor can be driven away from its steady state by time-
dependent external perturbations [5]. Here we are inter-
ested in the admittance of a mesoscopic conductor which
is part of an external network. The conductor is driven
away from the steady state through oscillating Huxes
bC (a) or oscillating voltages bU (w) applied at the con-
tacts o, = 1, 2, 3, . . . of the sample. As in the dc case there
exists an admittance matrix g p (w) = (bI (a) ) /6 Up (u)
which relates the currents at the contacts of the sample
to the voltages at the contacts. In contrast to the dc
case for which the internal potential distribution is irrel-
evant, the ac response depends in a sensitive way on the
distribution of the potential in the sample. This inter-
nal potential is a consequence of the charge distribution
generated by the voltages (or currents) applied at the
contacts and must be calculated self-consistently. The
calculation of an admittance may thus be separated into
three steps. First, the response to external potentials
is determined for noninteracting carriers, then the inter-
nal potential distribution is found from the unscreened
charges introduced externally, and finally the response to
this internal potential is evaluated. Below, we present a
calculation in which the first step is carried out exactly,
and the charging effect is taken into account to leading
order by taking the induced potential as spatially con-
stant in the sample.

In a first step we generate chemical potential differ-
ences with the help of voltages U or fluxes C applied
to each reservoir. The additional energy due to these
external potentials is

g p(ur) = (b'I (~)) /bUp(~)
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Equation (2) gives the currents at the sample contacts in
response to the external potentials. It characterizes the
boundary conditions needed for the solution of the full

problem. Below we give a derivation of this result [6].
We discuss the lack of particle current conservation and
show that with the help of self-consistent potentials total
current conservation is restored.

Our starting point is in contrast to much of the liter-
ature which derives a formal linear response to a given
potential distribution in the sample [7—9]. The difficulty
with such an approach lies in the fact that the potential
distribution is not known a priori. It seems unrealistic to
use the potential distribution that would exist in vacuum.
Instead, similarly to Pastawski [10], we investigate the ac
response to an external perturbation which prescribes the
potentials in the reservoirs only. The external potentials
effectively determine the chemical potentials p, of the
reservoirs and the potential distribution in the conduc-
tor must be considered a part of the response which is
to be determined self-consistently. An additional justi-

H, =) (QU ~IC), (1)

where Q is the total charge in reservoir o. and I is
the current in probe ct (see Fig. 1). For a conductor
characterized by M quantum channels in probe o. and
by a set of scattering matrices s p of dimension M x Mp
we find an equilibrium admittance matrix with elements

Q+2 O+3

FIG. 1. Mesoscopic conductor (see inset) in an external
network driven by Huxes P, n = 1, 2, 3, . . . .
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fication of our approach is given by the relation of Eq.
(2) to the equilibrium current-noise spectra [4] via the
fluctuation-dissipation theorem.

We begin our analysis with a more detailed discus-
sion of Eq. (1). To define the total number of carriers
Q in a precise way, it would be necessary to consider
a closed system, where Q is the total number of carri-
ers in reservoir o.. Strictly speaking, a closed system in
which carriers are subject only to elastic scattering does
not dissipate energy. To make our system. irreversible
we assume that the reservoirs are so large that we can
restrict our microscopic description to the currents enter-
ing the leads. Entering and leaving the reservoir is then
described in a scattering formalism. The phase and en-

ergy of outgoing and incoming carriers are uncorrelated
and the system is irreversible [ll]. In the calculation
presented below this step occurs when we relate the time
derivative of Q to the current, dQ /dt = I, and—use
the scattering expression for the current.

Similarly, it is necessary to discuss the electromagnetic
term in Eq. (1). In a network (see Fig. 1) the Huxes

are conjugate to circulating currents i„which can
be associated with each loop of the network. In con-
trast Eq. (1) is expressed in terms of particle currents
incident at each lead of the mesoscopic conductors and
fluxes C associated with each lead. Every analysis of
frequency-dependent phenomena must deal with the fact
that the conductor may temporarily deviate from a state
of charge neutrality. The sum of the particle currents
entering the conductor is not conserved but is related
to the total charge Qo accumulated in the conductor,
dQO/dt = Q I . In Fig. 1 total current conservation is
achieved by assuming a separate, capacitively coupled
path for the displacement current ii =—dQo/dt = QI .

For a conductor with N probes the particle currents are
related to the network currents via I„=i„—i„+~ for
n ( N and I~ ——i~ for n = N. Consequently the
Huxes in Eq. (1) are related to the network Huxes via
C„= g i P . Clearly, Fig. 1 is only an illustrative
example of a transformation of the relationship between
network currents and particle currents of the mesoscopic
conductor. But its central feature, the differing paths
followed by displacement currents and particle currents,
can be expected to be part of any model. After all in a
mesoscopic conductor that sits on a substrate and is often
formed with the help of charged gates, displacement cur-
rents and particle currents do follow very different paths.
Alternatively we could generate the electromagnetic per-
turbation, Eq. (1), by invoking local vector potentials
which generate electric fields that act only on a particu-
lar lead [12].

Next we demonstrate that the electric and magnetic
perturbations of Eq. (1) lead to the same response if they
generate the same electrostatic potentials dbC /dt
6V = bU . The response function K

&
defined by

(6I (w)) = P& K@&bC p(w) and the response function

. ()= ——([I () Q (o)))O() (4)

where [, ] denotes the commutator. I and Q are Heisen-
berg operators. Since for any operators A and B,
([A(T), B(0)]) = ([A(0), B(—T)]), and since dQ /dT
—I, it follows that the electromagnteic response given

by the time derivative of the electric response function
dK+/dT = rP . Both perturbations thus give rise to the
same ac conductance. In the following we calculate the
magnetic response function. With the help of Eq. (3) the
ac conductance is determined by

dT exp[i(cd + i0 )T] ([I (T), Ip(0)]).

(5)

To evaluate Eq. (5) we follow recent work on current
fluctuations in mesoscopic conductors. In second quan-
tization the operator of the total current in probe o, is

given by [4]

I (t)=— dEdE' a~ (E)a (E') —bi (E)b (E')

x exp[i(E —E')t/h], (6)

where at, a, bt, b are vectors with M components which
create (annihilate) incoming carriers and outgoing carri-
ers. The a and 6 operators satisfy the same commutation
relations. They are connected by a unitary transforma-
tion which is just the scattering matrix, b = Q& s pap.
Using Eq. (6) we find that the current operator in terms
of the a operators only is determined by a matrix [4]

Ap~(n, E, E') = 1 6 pb' ~
—sip(E)s ~(E'). (7)

Equation (7) consists of normalized current matrix ele-
ments evaluated in probe o„The matrix elements are
evaluated with the help of scattering states describing
incident carriers in probes P and p. In the presence of
a time-dependent perturbation, the particle current in
the leads is, strictly speaking, not spatially constant. As
discussed in more detail in Ref. [4] there are oscillating
contributions to the current both on a short length scale
(the Fermi wavelength) as well as on a long length scale
with a wavelength v~/a. The short-wavelength varia-
tions are a consequence of interference effects which can
be neglected deep in the leads. The period of the long-
wavelength oscillations, for a considerable range of fre-

quencies, is much larger than the dimensions of a typical
mesoscopic conductor [4]. In Eq. (6) these spatial vari-
ations are neglected and the particle current is taken to
be spatially uniform along each lead. Using Eqs. (6) and

(7) to evaluate Eq. (5) we find

r, +& defined by (6I (a)) = P& K &(w)PUBS(w) can be ex-
pressed in terms of the current and charge operators as
follows [13]:

K p(T) = ——([I (T), Ip(0)])O(T),
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p 2

g~P(~) =
(2 )2h

dE dE' Tr [A (P, E', E) + App(a. , E, E')] f(E) —f(E')
h~ i h~ + E —E' + i0+ (8)

Here we have used that at equilibrium the Fermi distribu-
ltion f is the same in each contact. We have furthermore

used the standard statistical assumption that only ex-
pectation values of pairs of creation and annihilation op-
erators which create and annihilate carriers in the same
quantum channel specified by the same quantum num-
bers have a nonvanishing statistical expectation value.
Equation (8) is still a formal expression. A key problem
in all linear response calculations is the appearance of the
double energy integral in Eq. (8). For noninteracting car-
riers the final result [see Eq. (2) contains a single energy
integral. Baranger and Stone [7 perform this integral on
the level of Green's functions in a veritable tour de force.
Shepard [8] points to a more direct path by appealing to
the analytic properties of the current matrix elements.
We proceed here in an especially simple and direct way:
The scattering matrix is itself a response function. It
must obey the causality requirement expressed by the
Krarners-Kronig relations [6]

(9)

A similar relation holds for the adjoint scattering ma-
trices. The scattering matrices in Eq. (8) occur in the
form of bilinear products at energy E and E' multiplied
by either f(E) or f(E'). lf f(E) occurs we apply Eq.
(9) to the integral over E'; if f(E') occurs we apply it
to the integral over E. The result of this calculation is
Eq (2), i.e. , a conductance determined by the trace of
App(n, E, E + hw). Equation (2) exhibits the microre-
versibility syrnrnetry g p(w, B) = gp (w—, B) and obeys
the reality condition g p(w) = g p( —w). The real (dissi-
pative) part of the frequency-dependent conductance is
g' p(cu) = 2[g p(w) + gp (w)] and thus is determined by

2 Tr[App(n, E, E+h~)+A (P, E+h~, E)]. It is related
to the equilibrium current Huctuations

1S p(cu) = — dr exp(iver) ([I (r), Ip(0)]+)

= 2 ~(~, kT) g' p(~) (10)
via the fiuctuation-dissipation theorem. In Eq. (10) the
energy of a harmonic quantum oscillator is denoted by
~(~, kT). The nondissipative (out of phase) part of the
conductance is g"p(~) =

2 [g p(w) —
gp (~)] and is deter-

mined by 2i Tr[App(o. , E, E+ hw) —A (P, E+ hw, E)].
Below we briefIy investigate the low-frequency behavior
of the conductance and link it to the density of states of
the conductor and to phase delay times for carrier traver-
sal and reflection [14, 15]. To first order in ~ we find, from
Eq. (2),

g p(w) = g p(0) —inc dE(dN p/dE)( df/dE), —
(»)

where

dNp 1 t
(

)Os p(E)
dE 4~i ~ BE

c)st p(E)
s p(E)

(12)

Here r = (1/M ) Pp Tr[s ps p]r p is the channel av-
eraged time that carriers exiting probe o, have spent in
the conductor irrespective of which probe they entered,

is the density of states of the conductor accessed by
carriers incident in probe P and leaving through probe

The total density of states accessed by carriers in-
cident from all the leads and exiting through all the
probes is P pdN p/dE. Alternatively, the term pro-
portional to w in Eq. (11) defines a time scale r p
h(dN p/dE)/Tr[st ps p] where h is Planck's constant.
The time ~ p is a multichannel average of characteris-
tic time scales related to derivatives of scattering matrix
elements. The scattering channel with carriers incident
in channel n in lead P and with carriers exiting in channel
m in lead o. contributes to the average time with a prob-
ability ls p „l2 a time r p „=hIm[d(lns p „)/dE].
Summing over all channels and dividing the result by the
total probability P „s~p~„[ gives r p.

The expressions for the characteristic times are valid
at zero temperature. At elevated temperature we can
introduce effective time scales by weighting the nomina-
tor and denominator with df/dE an—d integrating over
energy. The denominator in ~ p is proportional to the
zero-frequency conductance g p for o. g P. For o. = P
the denominator is proportional to —g + g, where

g, = (e2/h) M is a contact conductance. Hence Eq.
(11) can be expressed in the form

g-p(~) = g-p(o) + ilg-p(0) —g. , -~-p)~r-p

This intuitive result could also have been obtained simply
by assuming that the appearance of carriers in probe o. is
retarded with a time ~ p relative to their time of injection
in probe P. We emphasize that the appearance of a phase
delay time [14] as opposed to a time which depends both
on the amplitude and on the phase [15] of the scattering
matrix elements is due to the fact that the perturbation
we treat is not spatially localized.

In contrast to the zero-frequency case, where gp g p =
g p = 0 due to current conservation, the sum of the

frequency-dependent conductances Eq. (2) is in general
not zero. To linear order in w we G.nd

) gnp(a) = igc, n~rn)
p

) g~p(a) = rgc parp—
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and ~rr = (1/M ) P Tr[s &s p]7.~rr is the time carriers
entering the conductor through probe P have spent in the
conductor irrespective of the probe through which they
leave.

We conclude with a brief description of the effects of
self-consistent potentials on the total response of the con-
ductor. The main effect which we can take into ac-
count is the reduction of the charging of the sample
due to a counteracting self-consistent potential whereas
self-polarization effects would require a more detailed
theory. The pileup of a net charge dQp/dt = P I
on the conductor gives rise to an induced potential
UP = dppQp = (i/~)dppI where dpp = (C r)pp is

an element of the inverse capacitance matrix C. The
potential distribution (Up"d, U'"') is equivalent to the
potential distribution (0, U'"" —UP ). Thus the re-
sponse of the interacting system gr& ——6I /bU&"t in a
self-consistent potential approach [16] is determined by

= g pb'U&" —P& g @6', where g p is the con-
ductance of the noninteracting system. The solution of
these equations gives for the admittance of the interact-
ing system

g.'p(~) = g-~(~)—
&(/ C)E, g ( )Esgs~( )&

1+ (i/~C) E,s g»(~)
(16)

and gives for the current induced into the substrate
(the capacitance in Fig. 1) an admittance goer

(P.aI.-) /rUP ',

Es «t3(™)
1+ (i/~C) g~s g~s(~)

'

where we have used the abbreviation 1/C = dpp. The
combined admittance matrix of Eqs. (16) and (17) is
current conserving. The second term in Eq. (16) repre-
sents a self-consistent potential correction of the conduc-
tance of the noninteracting system. For small frequencies
Eqs. (14) and (15) show that this term is proportional to

For a conductor with one lead only, Eq. (16) gives
gr = g/[1+ (i/wC)g]. For small frequencies g = icu7 g, —
and hence g = —iwC/[1 + (wrrc/r)]. Thus the inter-
actions may be neglected if the RC time, &Rc = C/g„
is large compared to the dwell time w. If the RC time
is short compared to the dwell time, g = —i~C. Inter-
actions dominate the low-frequency behavior. The ad-
mittance matrix of the interacting system, Eqs. (16) and

(17), has the property that each element is a function of
all the noninteracting conductances. This has especially
interesting consequences if, as is the case at a quantized
Hall plateau, only certain conductances of the noninter-

acting system are nonvanishing. Further, an interacting
system permits ac currents for purely capacitively cou-
pled conductors for which all off-diagonal admittances
of the noninteracting system vanish. Thus Eq. (2) and
Eqs. (16) and (17) should be useful to characterize the
low-frequency response of a large class of mesoscopic con-
ductors.
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