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Two-Dimensional Atomic Crystal Bound by Light
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We have observed the vibrational levels of rubidium atoms spatially confined in two dimensions by two
crossed optical standing waves (oriented along the x and y axes) with mutually orthogonal linear polar-
ization (in the x-y plane). When the two standing waves oscillate with a 90' time phase delay, the
atoms are confined by dipole forces to the intensity maxima forming a two-dimensional collimated array
of linear de Broglie waveguides, spaced by half an optical wavelength. When the standing waves oscil-
late in phase no vibrational energy structure can be observed.

PACS nombers: 32.80.Pj, 42.65.—k

Very recently two research groups have observed one-
dimensional confinement and quantized motion of atoms
in an optical standing wave [1,2]. In this work we ex-
plore the potential of light forces to confine atoms with

respect to all spatial coordinates and at the same time
provide cooling down to temperatures in the microkelvin
range. This could lead to atomic samples highly ordered
in three-dimensional periodic lattices on the micron
length scale. The physics describing such a sample
resembles that of an ultracold and very dilute solid. In
this Letter we report a two-dimensional realization of
such an atomic crystal bound by light. In this 2D exam-
ple the atoms are confined by dipole forces to the intensi-

ty maxima which form a two-dimensional collimated ar-
ray of linear de Broglie waveguides, spaced by half an op-
tical wavelength. Unlike laser cooled ions in a ' Wigner
crystal" [3], neutral atoms do not show strong Coulomb
repulsion. Thus, one could study collective absorption
and emission processes and collisions in systems of two or
more closely spaced atoms trapped in the same de Broglie
waveguide. A three-dimensional extension of our experi-
ment would provide a cubic 3D lattice of microscopic
light traps. Interesting quantum statistical phenomena
might occur if several atoms are confined in the same mi-

croscopic light trap.
To achieve trapping and e%cient cooling of the atoms

at the same time, polarization gradients of the light are
necessary. In one dimension the configuration of two
counterpropagating laser beams with orthogonal polariza-
tion (i.e., the lint lin scheme) is appropriate [1,2]. How-
ever, when two or more standing waves are superposed,
inherently multidimensional phenomena can arise as the
action of vortical radiation pressure which may prevent
the localization of the atoms [4]. The presence of such
complications depends on the time phase differences be-
tween the employed standing waves and the choice of po-
larizations.

In this Letter we demonstrate two-dimensional quan-
tized motion and confinement of rubidium atoms in the
particularly simple 2D field geometry arising in the inter-
section region of two standing waves oriented along the x
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FIG. 1. The geometry of the electric field in the intersection
region of two orthogonal standing waves with linear polariza-
tions in the drawing plane, At p =90 the locations of circular
polarization form a two-dimensional array of de Broglie
wavegu ides.

and y axes and linearly polarized in the x-J plane. As
shown in Fig. 1, this light field acquires two different
types of spatial polarization gradients for the two charac-
teristic values p =0' and ltd

=90' of the time phase
difference between the two standing waves. When &=0
the polarization is linear everywhere, only its direction
varies. In the /=90' case there exists a 2D array of
straight lines parallel to the z axis where the light exhib-
its circular polarization with alternating sign. There is a
continuous change to linear polarization when one moves

away from those locations. The two cases shown in Fig. 1

resemble the two one-dimensional optical fields which
have been at the basis of the theory of polarization gra-
dient cooling, namely, the a.+o —configuration and its
counterpart, the lin J lin configuration [5]. Thus, we ex-
pect our two-dimensional light field to contain the physics
of both elementary 1D cases depending on the choice of
the time phase difference. In particular, our 2D field pro-
vides efficient sub-Doppler cooling for any value of p [6].
At the same time it does not suffer from vortical radiation
pressure [4].
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Let us consider the case &=90' in some more detail
for an atom with a J J+1 transition, e.g. , J=3~ We
choose the quantization axis perpendicular to the plane of
the 2D field. The Zeeman levels experience diAerent spa-
tially varying light shifts due to the diAerent size of the
Clebsch-Gordan coe5cients and the spatially varying po-
larization and intensity of the light field. At negative de-
tuning 6 of the light frequency with respect to the atomic
resonance the outermost Zeeman levels (m = ~ 3) are
shifted by a maximum amount downward at those loca-
tions where the light is circularly polarized. Thus, atoms
in the m = ~ 3 states experience deep potential minima
at those locations and we expect a confinement of the
m =+ 3 atoms in two dimensions. In particular, because
the circular polarization components of the light are
strongly unbalanced at nearly any location, optical pump-
ing should prepare the atoms predominantly into the
outermost Zeeman states. Aided by e%cient sub-Doppler
cooling, a large fraction of atoms should get localized in a
2D array of de Broglie waveguides with 1/2 periodicity (X
is the optical wavelength). More precisely, m =3 atoms
should collect at places of positive circular polarization
whereas m = —3 atoms should collect where the light has
negative circular polarization. Thus, atoms at neighbor-
ing waveguides should exhibit opposed magnetization
oriented along the z axis similar to an antiferromagnetic
medium.

In the vicinity of the local minima the optical potential
is approximately described by a two-dimensional harmon-
ic oscillator potential. Therefore, we may expect discrete
nearly equidistant vibrational quantum states in that po-
tential. A quantitative analysis has to take into account
tunneling between diA'erent potential minima, which at-
tributes a width to each vibrational state. At higher vi-

brational quantum numbers these widths significantly
wash out the discrete energy structure. Therefore, a band
theory is more appropriate for the analysis of the prob-
lem. However, one-dimensional band calculations have
shown that the widths of the low-lying states are of the
order of 10 times the recoil energy which is far below
the energy separation of the vibrational levels [7]. When
the atoms are su%ciently cold we may thus treat the po-
tential minima independently.

In the following, we consider m =3 atoms, slowly mov-

ing in the vicinity of a potential minimum. We may,
thus, study the atomic vibrational motion by considering
the forces on a stationary two-level atom. This yields a
particularly simple expression for the trapping potential:

U(x, y) = ln(1+S),h6
2

S(x,y) =Sp —,
' [cos(kx)+cos(ky)]',

2

So= ~max

2[a'+ (r/2) ']
Here, Sp denotes the saturation parameter of the (J=3,
m =3) (J=4,m =4) transition, co,.„ is the antinode

k'(x'+y')+O(4) .
1 Sp
2 1+So (2)

For negative values of the detuning 6, the second term in
Eq. (2) provides a two-dimensional harmonic oscillator
potential yielding a frequency separation of the equidis-
tant vibrational levels of

Av„, = (153 kHz) I S,
I 1+So (3)

The value of 153 kHz corresponds to the D2 resonance
line of Rb. There are two sources of anharmonicity
both leading to a lowering of the nth vibrational level and
a splitting of its (n+1)-fold degeneracy which increase
with the vibrational quantum number n. On the one
hand, there are higher-order terms in Eq. (2) which, how-
ever, introduce corrections of only a few kilohertz. On
the other hand, the two-level model used in Eq. (2) is
correct only for an atom which is located exactly in a po-
tential minimum. For a slightly displaced atom optical
pumping partially populates the m =2 state and the atom
thus experiences an effective potential which is lower than
predicted by Eq. (2). Both types of perturbations exhibit
a spatial geometry such that the twofold degeneracy of
the first excited state is preserved and the threefold de-
generacy of the second state is lifted. The lifetimes of the
low-lying vibrationa1 states should be determined by the
optical pumping time.

We now consider the case when &=0' in our 2D field.
The polarization remains linear in the plane of the light
field (see Fig. 1). Depending on their internal state and
the corresponding Clebsch-Gordan coefficient the atoms
now move in potentials of diAerent size which arise from
the spatial variation of the energy density of the light.
The minima of these 0' potentials are at the same loca-
tions, in contrast to the 90 case where two diff'erent opti-
cal potentials confine m = —3 and m =3 atoms at
separated locations. As in the 90 case optical pumping
tends to prepare the atoms into the most light shifted
Zeeman state; however, this pumping is less complete for
&=0 because the local cr+ and o —polarization com-
ponents (with respect to the chosen quantization axis z)
are balanced everywhere. In addition, the polarization
gradient cooling at 0' is less efficient [6]. As a result we
expect population of vibrational states up to higher order
arising from various potentials of diAerent depth. The
lifetimes of these vibrational states should be smaller

Rabi frequency for this transition, I is the inverse life-
time of the excited state, and we have parametrized our
light field such that the locations (x,y) of positive circu-
lar polarization are given by kx =+ 2nz, ky =+ 2nx,
where n is an integer. We may expand Eq. (1) up to
second order obtaining

U(x, y) = ln(1+Sp)h6
2
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than in the 90' case because of the rapid redistribution of
the atoms among the diAerent potentials by optical
pumping.

In our experiment a cold (4 pK) dense (10' atoms/
cm ) cloud of atoms is prepared by a magneto-optical
trap operating in a rubidium-vapor cell [8]. The cloud is
about 0.3 mm in diameter and contains approximately
3x10 atoms. The trap is active for 40 ms. During the
last 0.5 ms the magnetic field is switched oA and the fre-
quency detuning of the trapping light field is increased
for most efficient sub-Doppler cooling. Then, the trap-
ping light field is switched oA for a probing period of 2
ms, while the repumping laser (which counteracts
hyperfine pumping) is kept active. During this time our
2D field is activated at the position of the atomic cloud.

The 2D field is produced by crossing the two branches
of a Michelson interferometer which is fed by the spatial-
ly filtered output of a grating stabilized diode laser. The
time phase diA'erence between both branches can be servo
controlled to any desired value by analyzing the light
rejected from the interferometer. We couple 3 mW in a
6-mm-diam beam into the interferometer. This results in
an antinode Rabi frequency cu,, „=SI. The frequency of
the 2D field is detuned with respect to the (F =3,
m =3) (F =4, m =4) transition of Rb by 6= —8I.
According to Eq. (3) the harmonic part of the frequency
splitting between adjacent vibrational states for p =90 is

gain

phi = 90
---- phi = 0

4v„, =161 kHz.
A weak linearly polarized probe laser beam of 0.4 mm

diameter is directed through the cloud. This beam travels
within the x-z plane and is tilted by 6 with respect to theI axis. Its frequency vz is tuned across the frequency of
the 2D field v2D during the probing period, while its ab-
sorption by the atoms is recorded. We adjust the probe
polarization parallel to the plane of the 2D field to excite
Raman transitions between the diA'erently populated vi-
brational states. We interpret the absorption spectrum
shown in Fig. 2(a) as the Stokes and anti-Stokes lines due
to the Raman transitions connecting the vibrational
ground state with the first and second excited states.
These resonances occur at center frequencies v2D+ An[
and v2D+ hn2 symmetrically detuned from the frequency
of the 2D field v20. To evaluate hni and h, n2 we have
fitted the Raman part of the spectrum with Lorentzians
located symmetrically around v2o (Fig. 3). We obtain
the values h, ni =1S9 kHz and hn2 =285 kHz, respective-
ly. The value of 159 kHz is in good agreement with the
value of 161 kHz expected according to Eq. (3).

The above interpretation is based on the following con-
siderations. The observation of well-resolved sidebands
with significantly decreasing separation indicates that a
large fraction of the observed transitions should start
from the same state which should be the ground state if a
thermal distribution of the populations is assumed. If
transitions starting from highly excited states would
strongly contribute to the spectrum, we-would expect to
observe broader and more evenly spaced sidebands be-
cause each of them would be due to a series of strongly
decreasing energy separations. According to measure-
ments similar to those described by other authors [9] our
atomic cloud is prepared at a temperature of about 4 pK
and due to the presence of eAicient sub-Doppler cooling
in the 2D field [6] this temperature should be maintained.
Assuming a 4-pK thermal distribution of the vibrational
populations leads to a ground-state population which is
about 4 times the population in the first excited state. Is
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FIG. 2. Absorption spectra for &=0', 90' and diAerent
orientations of the linear probe polarization. In (a) it is parallel
and in (b) it is perpendicular to the plane of the 2D field. The
frequency resolution is a few kHz and the signals are typically a
few percent of the probe intensity.
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FIG. 3. The dotted curve repeats the 90 spectrum from Fig.
2(a). The solid line is a Lorentzian fit of that part of the spec-
trum which we interpret in terms of Raman transitions between
diAerent vibrational levels. The residual narrow structure in the
center of the dotted curve results from Bragg scattering due to
the periodic spatial order in our atomic sample.
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this assumption compatible with the observed relative
weights of the first and second sidebands? To check that,
we have conducted a calculation of the transition rates
from the vibrational ground state to the first two excited
states. In this calculation the atoms are subjected to a
potential with a harmonic part as given in (2) and an
anharmonic part which is adjusted to yield the experi-
mentally observed sideband frequencies. This potential is
distorted by the interference between the probe and pump
waves yielding vibrational excitation of the atom. We ob-
tain a ratio of the transition rates from the ground state
to the first (P~) and second (P2) excited states of
Pz/P~ =0.5 which is in reasonable agreement with the ob-
servations. The 1/e radius of the ground-state probability
density is only )j./29. This indicates that a large fraction
of the observed atoms is localized along the axes of the
light-induced waveguides. The vibrational energy levels

are not well resolved for /=0 [Fig. 2(a)]. In particular
we observe more atoms at higher frequencies than in the
90 case corresponding to sidebands of higher order. As
a check of our interpretation in terms of Raman transi-
tions we have adjusted the probe polarization perpendicu-
lar to the plane of the 2D field [Fig. 2(b)]. In this case
the probe drives only x transitions and thus cannot
cooperate with the 2D field to excite a Raman transition.

The narrow structure in the center of the spectrum
shown in Figs. 2(a) and 3 results from a Bragg scattering
process arising from the periodic order in our atomic
sample. A quantitative investigation of this Bragg reso-
nance is beyond the scope of this Letter. However, in the
following we briefly sketch a physical model for the origin
of this resonance which modifies the one-dimensional con-
siderations from Ref. [I]. In the following the terms cr+
and o —always refer to the quantization axis (i.e., the z
axis). The probe contributes equal amounts of a+ and
a —polarization to the total local light field. This results
in a modulation of the populations of the vibrational
states within each waveguide with the frequency

~ v~—vzD~. Each of the four traveling (pump) waves which
produce the 2D field can be scattered by these modulated
populations at each lattice site yielding a scattering com-
ponent propagating on the same axis as the probe beam
with the same frequency and polarization. To understand
this, note that the oscillating electric field of each pump
wave at a given lattice site can be split into n+ and o. —

portions of equal size. These are scattered by the orient-
ed atoms with different phases, thus, giving rise to a small
"Faraday rotation" of the linear pump polarization
within the x-y plane. The scattering components from
different lattice sites interfere constructively for the fol-
lowing reasons. In the case of the pump wave counter-
propagating with the probe the path length difference
from components scattered by successive lattice sites is X

and the scattering phase is the same for each lattice site.
For the pump waves propagating perpendicular to the
probe there is an optical path length diA'erence of X/2 be-
tween components scattered by successive lattice sites.
However, in this case we obtain a compensating phase
difference of z from the opposed magnetizations. The to-
tal scattered wave interferes with the probe beam and
gives a dispersively shaped resonance. The width of this
resonance in our model is determined by the inverse re-
laxation time for the vibrational popu1ations. Preliminary
results from a three-dimensional extension of our experi-
ment show a central resonance with a dramatically de-
creased linewidth of less than 2 kHz.
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