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Universal Velocity Correlations in Disordered and Chaotic Systems
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The response of weakly disordered metallic grains to Aharonov-Bohm flux suggests a rescaling
in which statistical correlators become universal. We derive an exact expression for a correlator of
level "velocities, " and provide numerical evidence which suggests that the universality extends to a
wider class of systems and generalizes to arbitrary perturbations providing a new characterization
of quantum chaos. These results are applied to Fermi velocities of complex. lattices.

PACS numbers: 05.45.+b, 71.25.—s, 73.20.Dx

and/or X'. We propose that after rescaling,

x = QC(0)X, e, (x) = E,(X)/4,

The Wigner-Dyson distribution of level spacings [1]
provides an accurate description of a variety of complex
systems ranging from those with many degrees of freedom
and strong interactions (e.g. , atomic nuclei) to the quan-
turn mechanical motion of particles in irregular potentials
(e.g. , quantum dots, disordered metallic grains). The dis-
tribution serves as a universal classification of quantum
chaos [2]. With such correlations, the dependence on the
system enters only through the mean level spacing, E.
Here we provide exact analytical results which suggest
that the response of the energy levels E; to an exter-
nal perturbation, controlled by some parameter X [3—5],
relies on just one additional parameter,

the statistical properties of the random functions e, (2:) are
universal independent of the nature of X. The physical
interpretation of C(0) as a "generalized conductance" can.
be found through a universal fluctuation-dissipation the-
orem [3, 6] which can be derived for this class of system.
The nonuniversality of C(0) prevents a more precise gen-
eral definition.

We will seek to establish this rescaling by focusing on
a particular class of chaotic system in which the averag-
ing can be performed from a statistical ensemble. For

1 E, X disordered systems it is possible not only to motivate the
c(0) = (1) rescaling of Eq. (2) but to derive an exact expression

for the autocorrelator of density of states (DOS) fluctu-
where ( ) denotes a statistical average which, for ex- ations, from which we can determine, for example, the
ample, can be performed over a typical range of levels, autocorrelator of level "velocities" 0 e, (z) —= Oe;(z)/Oz,

The analytical expression for c(io, x) will be checked by
numerical simulation of an Anderson model of disorder,
and the universality confirmed by a chaotic billiard.

If we chose the perturbation X to be an Aharonov-
Bohm flux through a ring, c(a, x) acquires the follow-

ing interpretation. The flux P acts as a quasiperiodic
boundary condition, so that E,(P) describes the disper-
sion of a periodic one-dimensional lattice with the open
ring deFining the unit cell. Higher dimensions of the lat-
tice d require the generalization to a torus with compo-
nents of "flux, " P& (1 & p & d~) acting along all spa-
tial directions. The quasimomentum of the Bloch func-
tion n' = 2vrg/L, where L denotes the sample (unit cell)
size and flux is measured in units of the flux quantum
Po = hc/e. With X. = n' [7], c(co, 2:) measures the av-
erage autocorrelation of velocities at the Fermi surface.
Equation (2) implies that, after proper rescaling (and
removal of discrete symmetries), the autocorrelation of
Fermi velocities of complex crystalline lattices (e.g. , an-
tidot arrays) becomes universal.

Consider the Hamiltonian describing the motion of a
spinless particle confined to a d-torus and subject to an
Aharonov-Bohm flux P and 6-correlated disorder poten-
tial,

H(P„) =

A:(A, Q) = ) 4 (b(E —0 —E,($))6(E —E (P+P)))

(5)

).(py,
—hct'i /L) + W(r) (@)

We assume that 2/mv « r « L/v, where v denotes
the velocity of the particle on the torus, and the mean
free time between collisions ~ is defined through the en-
semble average, (W(r)W(r')) = L"Ab(r —r')/2vrr [with

(W(r)) = 0]. This implies that the particle motion is dif-
fusive, with the classical diffusion constant D = v2r/d.

The application of diagrammatic perturbation theory
to determine the dimensionless autocorrelator of DOS
fluctuations,
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leads to pathological divergences when yP ( 1/g [8], where g = D/LzD denotes the dimensionless zero ternpera-
ture conductance. Fortunately, for small p we can apply the method of supersymmetry [9] to determine k(fl, p)
nonperturbatively. A straightforward but lengthy generalization of existing theory [l.0], which we outline presently,
gives

dAi exp[ —2~ ggP (A, —A ) —i~A(A —Ar + if)/2 ],

where the superscript u reflects unitary symmetry of the Hamiltonian. Equation (6), which is valid for P„(1/2,
shows k(A, P) to depend only on g and A.

By using Eq. (6) we find [10]

(7)

where g„ is the dimensionless conductance resolved along direction p. Equation (7), which is analogous to the Thouless
formula for conductance [11,12], can be used to apply t;he rescaling of Eq. (2) (generalized to an arbitrary number of
components),

x„=C""(0)P„, u) = A/A.

The result is a universal expression,

k (~, x) =
2vr~x~A

(exp[—x [vrA —A /2)] —exp[ —x (~A + A /2)]) cos(u)A). (9)

According to the universality, Eq. (9) should be valid

for all unitary systems (broken T invariance). This can

be verified for disordered metallic grains perturbed by a
magnetic field X = BL /&Po when C(0) = erg/3 [10]. The
range of x over which Eq. (9) is valid is dependent on

nonuniversal properties of the system. For Aux, break-

down of universality occurs at P 1/2 (or equivalently

x ~ ~g) when higher mode corrections become signifi-

cant and ultimately recover the periodicity. More gener-

ally, we believe that the cutoff is set by x (toA)
where t0 is of the order of the time of the shortest peri-

odic trajectories. (In disordered metals to L /D, while

for ballistic chaotic systems, tc L/v).
When the dimensionality of the parameter space d [7]

is greater than unity, as with multicomponent Aux, we

can define the generalization of Eq. (3), 0.8—
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vanish like —xz. The contribution from the first return
dominates and c(0,x) remains negative over the whole
region of x. In higher dimensions, the connected part of
the surface can give nonzero contributions along d —j. di-
mensions even in the limit x. —+ 0, and c(0, x) remains fi-

nite approaching unity in the limit of high d~. For d~ = 2

this "diagonal" contribution dominates over most of the
range with c(0, x) becoming negative only at large values
of x, while for d ) 2, it remains positive at all x.

The behavior of c(cu, x) at w g 0 in d = 1 is shown

inset in Fig. 1. c(u, x) develops a maximum in x coin-

~c "(cu, x) = [1+k(~, x)] '8~„&z„
4P 0

de~ k(e, —ez, x).

In Fig. 1 we show c(0,x)—:d Tr c~"(O, x.) for d = 1,
2, and 3 with asymptotics,

1 —1/d —O(xz), x ~ 0,
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c(0, x) measures the averaged autocorrelation of veloci-

ties on a (d~ —1)-dimensional "Fermi" surface. At x = 0,
it shows singular behavior being equal to unity at the
origin but tending to 1 —1/d as x —+ 0. For d = 1

contributions to c(0, x) as x —& 0 arise from consecutive
crossings of the Fermi level close to a turning point and
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FIG. 1. Autocorrelation of velocities c(0, x) shown for d =
1, 2, and 3 as a function of IxI for d = 1 (full line), d = 2

(dashed line), and d = 3 (dotted line). The variation of c(cu, x)
for d = 1 is shown inset for values of w = 0.1 (full line),
ur = 0.25 (dashed line), ur = 0.5 (dotted line), and u = 1
(dash-dotted line) .
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FIG. 2. Variation of g through the spectrum taken from
the numerical simulation of an Anderson model on a 27 x 27
lattice with disorder, W = 2.4 (squares), W = 2.9 (circles),
W = 3.9 (triangles), and a chaotic billiard (crosses) with ge-
ometry shown inset. The cylindrical geometry of the billiard
is constructed by connecting the figure along the zigzag edge.
In all cases, the measurements are shown after averaging over
forty neighboring levels, and in the case of the disorder, av-
eraging over four realizations of the potential, and combining
the data from the upper and lower halves of the spectrum.
The variation of g as a function of W is shown inset.

ciding with the value at which an energy level typically
changes by an amount u. Beyond the maximum c(u, 2:)
changes sign and approaches the asymptotic behavior of
Eq. (11).

We compare the theory with numerical simulation of
an Anderson model with on-site energies in the range
—W/2 ( W~ ( W/2 (measured in units of the hopping
matrix element), and subject to a one-component flux,
X = P. The conductance g = C(0)/4ir (Fig. 2) shows
a W dependence consistent with the Born approxima-
tion [13].

To compare c(cu, x) with numerical simulation it is con-
venient to make a Gaussian regularization of the DOS.
This introduces a factor exp[—6 A ] into the integrand
of Eq. (9) and affects c(w, x) only at small x and u, in
particular broadening the 6 function at the origin. The
agreement of theory with experiment (shown in Fig. 3
for 6 = 0.03) uiithout any free parameters is striking. A
simulation with magnetic field X:—BL //II is also in
good agreement with theory.

To verify that the universality extends beyond disor-
dered systems we compare measurements of c(u, x) taken
from a typical chaotic billiard (with geometry shown in
Fig. 2). The results shown in Fig. 3 give good agree-
ment with theory, and further demonstrate that spectral
and ensemble averaging have the same effect verifying
ergodicity.

FIG. 3. Autocorrelation of velocities c$—Q, 03(0, 2,') from
unitary theory (full line), orthogonal theory (dotted line) from
Ref. [10], numerical simulation of an Anderson model with
X = P and disorder, W = 2.4 (squares), W = 2.9 (circles),
W = 3.9 (triangles), numerical simulation of a chaotic bil-
liard with geometry shown in Fig. 2 (open diamonds); and
with X = BL /Pc and disorder W = 2.4 (filled diamonds).
We note that the region at which the data begin to deviate
from the universal curve increases with increasing g as ex-
pected. The variation of cg —o,p3(u, z) for difFerent values of
u from unitary theory (numerical) simulation with disorder
W = 2.4 is shown inset, with cu = 0.1 [full line (squares)],
u = 0.25 [broken line (circles)], and cu = 1 [dotted line (trian-
gles)]. To enhance the statistics, the disordered samples are
each averaged over four realizations of the potential. In all
cases, cb=o, os(ur, 2, ) is determined by averaging over a range
corresponding to 1/4 of the eigenvalues.

For complex crystalline lattices, it is convenient to re-

express the rescaling through the mean-square velocity
8z—:C(0)62L2/4ir2, with x = 8x/A. Then the uni-

versal autocorrelation of Fermi velocities can be written
as 82c""(w, x). Approximations used in deriving k(u, x)
restrict the range of momenta difference to the Brillouin
zone. We note that the appropriate symmetry is unitary
since the effective Hamiltonian for the periodic part of
the Bloch function violates T invariance except when the
total momentum is zero.

Having demonstrated that the expression for k" (ur, x)
leads to an accurate description of two types of chaotic
system we will present an outline of its derivation. Repre-
senting k(A, P) in terms of a supersymmetric Lagrangian
containing equal numbers of commuting and anticom-
muting fields, the interaction generated by the ensem-
ble averaging is decoupled by a Hubbard-Stratonovitch
transformation with the introduction of 8 x 8 superma-
trix fields, Q(r). To order (mv2r) i and (Ar) i, small
Quctuations about the saddle point are controlled by a

!
functional nonlinear a model [10],

Qii(r) Qii(r') exp( —F[Q]) 'DQ I "dr dr'+ 1 (12)

where F[Q] denotes the free energy,
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7r
STr D! TQ ——[Q, ors]! +2iAA

( ih
I. ' )

with the constraint Qz = l. I' represents a diagonal
matrix which depends only on the u
signature (P, P+ P). For brevity we re
the symmetry properties of Q together
of rs, A and the si.pertrace, denoted S

For vanishing &2 and A the transver
all the fields in Q become Goldstone
sponding symmetry of Q belongs to t
semble and both diKuson and Coopero
sion contribute significantly to the av
and P = 0, the matrix rs breaks T-rever
the Goldstone modes corresponding to
grees of freedom acquire a mass. The
of freedom belong to the unitary ense
sitive only to the flux difference P. Si
large, we will examine fluctuations of
only unitary symmetry.

Q dr,

k'(co, z) = Re dA dAi

pper indices with Within the diffusive regime, for !P„[( 1/2 the con-
fer to Ref. [9] for tribution from the nonzero space harmonics can be ne-

with the definition glected [9], making the functional integrals that enter Eq.
'rr. (12) definite. At values of flux!P„[ 1/2 gauge invari-
se fluctuations of ance requires a more careful definition of the zero mode

modes. The corre- [10] from which periodicity can be recovered. However,
he orthogonal en- since this crossover is described by nonuniversal correc-
n modes «di«- tions from higher modes, we will henceforth assume that

«age. For P g 0 !P„[( 1/2. A treatment of the higher modes by per-
sal symmetry and turbation theory is presented in Ref. [8]. Performing the
the Cooperon de- definite integrations we obtain the expression for k"(0, P)

remaining degrees given by Eq. (6).
mble and are sen- A perturbation which conserves T invariance can be
nce P is typically used to determine the universal function for the orthog-

Q(r) w»ch disp»y onal ensemble. The procedure [10] is analogous to that

!
presented above and gives

(1 —Az) (A —Ai A2)
z

(2AA1A2 A2 A& A2 + l )2

x exp[ —vr x (2AiA& —Ai —A2 —A + 1)/4 —i7r~(A —AiAz+i6)] (14)

The expression differs qualitatively from the unitary case
by the additional integral over A2. This is a remnant of
the Cooperonic degrees of freedom which give a nonvan-
ishing contribution when the symmetry is orthogonal.

In conclusion, we have studied the dispersion of the
energy levels of quantum chaotic systems in response to
an Aharonov-Bohm flux. The functional form of the au-
tocorrelator of DOS fluctuations suggest a natural rescal-
ing in terms of the mean-level spacing and C(0) in which
the dependence on detailed properties of the system is
removed. The analytical results have been verified by
numerical simulation of models with scattering from im-
purities (disorder), as well as from irregular boundaries
(billiard), the latter suggesting that k" (io, x) is not spe-
cific to disorder but describes a wider class of chaotic
systems. In addition to k" (io, 2:), we have presented the
universal function for the orthogonal ensemble, A."(io, x)
[10]. We suggest that the universality after rescaling ap-
plies to all statistical properties of the random functions
e, (2:), and with the same generality as the Wigner-Dyson
distribution, providing a new characterization of quan-
tum chaotic systems.
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