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No Time Asymmetry from Quantum Mechanics
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With CPT-invariant initial conditions that commute with CPT-invariant final conditions, the
respective probabilities (when defined) of a set of histories and its CPT reverse are equal, giving
a CPT-symmetric universe. This leads me to question whether the asymmetry of the Gell-Mann-
Hartle decoherence functional for ordinary quantum mechanics should be interpreted as an asym-
metry of time .
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There are many time asymmetries observed in our Uni-
verse (not all unrelated), such as the thermodynamic ar-
row of time, the arrow of retarded radiation, the psy-
chological arrow, the expansion of the Universe, and the
T noninvariance of the K system. The collapse of the
wave function through the process of measurement [1]
has sometimes appeared to be an independent quantum
arrow of time [2], though it has also been ascribed to the
thermodynamic time asymmetry of the external measur-
ing apparatus or environment [3].

Aharonov, Bergmann, and Lebowitz [4] have proposed
a time-symmetric generalization of ordinary quantum
mechanics by using ensembles of histories with both ini-
tial and final states. Griffiths [5], and later Unruh [6] and
then Gell-Mann and Hartle [7—9], have developed a sim-
ilar formulation in terms of an initial and a final density
matrix. In this formulation, ordinary quantum rnechan-
ies corresponds to the case in which the final density ma-
trix is proportional to the identity, which denotes a final
condition of indifference and which Cell-Mann and Har-
tle argue gives ordinary quantum mechanics an arrow of
time.

Here I shall prove a theorem implying the CPT in-
variance of probabilities in ordinary quantum mechanics
when the initial density matrix is CPT invariant, which
is thus suKcient to give a CPT-invariant universe, as-
suming, as I shall do throughout, that the Hamiltonian
is CPT invariant. I shall follow this with some specula-
tive interpretations of the asymmetry of the Gell-Mann-
Hartle formulation of ordinary quantum mechanics.

Gell-Mann and Hartle [10, ll] formulate the laws of
generalized quantum mechanics for a closed system in
terms of a deeoherence functional

D(a, n') = Tr(PI C P,Ct, )/Tr(PI p, ), (1)
where p, is an initial density matrix, py is a final density
matrix, and

C = P" (t„) P', (ti) (2)
is a string of projection operators representing the his-
tory o. = (ni, . . . , o.„) in the Heisenberg picture, with
t~ & t2 & - & t„. Alternatively, C could be a sum of
such strings. When (ci) is an exhaustive set of histories,
meaning

) C. =I, (3)

and when this set decoheres, meaning

Re D(n, o,") = 0 for n g n', (4)
then the diagonal elements of the decoherence functional
give the probabilities for all histories of that set:

p(o-') = D(n, ci,) = Tr(pIC p, C )/Tr(pfp ) . (5)
Ordinary quantum mechanics corresponds to the spe-

cial ease of this in which p, is proportional to the density
matrix of the system and py is proportional to the iden-
tity matrix I, giving a final condition of indifference. In
this case the difFerence between p, and py leads to an
asymmetric decoherence functional D(o., ci') and set of
diagonal elements p(ci), which Gell-Mann and Hartle in-
terpret as the (ordinary) quantum-mechanical arrow of
time.

To be specific, suppose the initial and final density
matrices are separately CPT invariant but not the CPT
reverses of each other (so each separate state is time sym-
metric, by which I shall henceforth mean CPT invariant
rather than T invariant in order for the dynamical laws
to be time symmetric):

p, = Op, O, PI = OPIO

pI g Op, O

(6)

(7)

where 0 is the antiunitary CPT operator. Follow Gell-
Mann and Hartle [8] in defining the CPT reversed his--
tory 6 represented by the string

C. = P.', (—t, ) "P" ( t„), — (8)
with

P"„(—t ) =O 'P"„(t )OA, (9)
and with the order of the projection operators reversed
to put the earlier times on the right and the later ones
on the left, —t ( & —t2 ( —t~. This gives

C =0 C~O, (10)
which is generally true even when C is a sum of strings
(2). Then Eq. (6) implies that

D(6, (%') = Tr(PIC P,C )/tTr(p p, I)

= ~(p,C.'&~.')/~(p, pI),
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which would be the complex conjugate of D(n, n') if

pt = p, [or if py = Op, O if Eq. (6) is not assumed]
but generally is not if the two density matrices are not
so related. This is the Gell-Mann —Hartle asymmetry of
quantum mechanics with differing initial and final condi-
tions.

However, if the initial and final density matrices p, and

py commute, and if the CPT reve-rsed set of histories (aj
obeys the decoherence condition

ReD(a, a') = 0 for &5 P a' (12)
analogous to (4), so that the diagonal elements

p(a) = D(a a) = Tr(PIC P*C.')/Tr(py p*) (»)
obey the sum rules necessary for them to be interpreted
as probabilities, then the separate CPT invariance of
each density matrix implies that the respective probabil-
ities of the corresponding sets of CPT-related histories
agree, as the following theorem shows.

Theorem 1.—If the initial density matrix p, and the
fina density matrix py commute, if they obey Eq. (6) and
hence are each separately CPT invariant, and if the set
of histories (nj and the corresponding CPT reversed -set

(a}obey Eqs. (4) and (12) and hence decohere, then the
corresponding probabilities of the respective individual
histories, p(a) and p(a) as given by Eqs. (5) and (13),
are equal.

Proof.—Summing the decoherence condition (4) over
all o.' different from o. and using the completeness relation
(3) allows one to rewrite Eq. (5) as

p(a) = ReTr(pyC P,I)/Tr(pyp, )
= ReTr(p, pyC )/Tr(pgp, ), (14)

where the cyclic property of the trace is used here and
below to get the C at the right end. Similarly, summing
Eq. (12) over all a difFerent from a', using (ll) and the
analog of (3), and then dropping the prime, converts Eq.
(13) into

p(n) = Re Tr(pyIP, Ct)/Tr(pgp, )

= Re Tr(py p, Ct )/Tr(p~p, ). (15)
Now Eq. (10), the cyclic property, Eq. (6), and the
assumption that p, and py commute give

Tr(pyp, C ) = Tr(pj p, O 'C 0)
= Tr(OPTO 'Op, O 'C )

~(pf p C) = ~(P PfC ) '('16).
Therefore,

p(a) = p(a), (17)
so the probabilities of CPT-related histories are equal
under the assumptions above, even without assuming
that the initial and final density matrices are the CPT
reverses of each other (p, = 0 ipyO), Q.E.D.

As an example of a consequence of this theorem, con-
sider the ease in which C is a single string (2) with

P, (ti) corresponding to low coarse-grained entropy and
P" (t„) corresponding to high entropy, so that the his-

tory o. has entropy increasing from the earliest time tq to
the latest time t„. Assuming that the definition of coarse-
grained entropy is CPT invariant, so that P"„(—ti, ) cor-
responds to the same entropy as P"„(t~), then the CPT
reversed history a has entropy decreasing from the new
earliest time t„—(that of the projection operator now
adjacent to p, ) to the new latest time ti —(that of the
projection operator now adjacent to py). Then under the
conditions above (commuting CPT-invariant p, and py),
the probability of a history o. with one thermodynamic
time asymmetry is equal to that of the history 6 with
the opposite thermodynamic time asymmetry, so long as
both probabilities exist. In other words, the asymmetry
of the decoherence functional does not give any preferred
direction (in the sense of differing probabilities) for the
thermodynamic arrow of time, even if one sticks with
the convention [7—11] that the earliest times correspond
to the operators nearest to p, in the decoherence func-
tional.

If we do have a final condition of indifference, py oc I,
which corresponds to ordinary quantum mechanics, it
obviously commutes with any p, and is CPT invariant.
Therefore, in ordinary quantum mechanics the CPT in-
variance of the initial density matrix is sufhcient to imply
that the probabilities of a set of histories equal the corre-
sponding probabilities of the CPT reverse-d set (if both
sets decohere, as is necessary to get probabilities obeying
the sum rules). Such a universe would be CPT invariant,
according to the definition of Gell-Mann and Hartle [8],
even without their alternative sufBcient condition

py ——Op, O (18)
Thus we see that the Gell-Mann —Hartle formulation of

quantum mechanics, even with greatly different commut-
ing initial and final conditions (such as ordinary quantum
mechanics with its final condition of complete indifFer-

ence), does not by itself give any time asymmetry for
the probabilities. It leads to CPT-symmetric universes
if the initial and final conditions are separately CPT in-
variant. In this formalism, any such asymmetry in the
probabilities must lie separately within the initial and/or
final density matrix of the closed system. This result is
not in convict with the results of Gell-Mann and Hartle

[8], who merely proposed Eq. (18) as a sufhcient con-
dition for a CPT-invariant universe. However, if one re-

gards the probabilities of decohering sets of histories as
basic and does not attach a meaning to the entire deco-
herence functional (which does have an asymmetry), one
can avoid interpreting ordinary quantum mechanics as
necessarily having any time asymmetry.

Of course, the time symmetry of the probabilities of
CPT-reversed sets of decohering histories does not imply
that each history with a significant probability within one
of those sets is itself time symmetric, as was illustrated
by the example above with changing entropy. It merely
implies that the time-reversed history in the other set
has the same probability. Thus observers in one of the
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histories may see that history as being time asymmetric,
even if the overall initial and Anal quantum states are
each separately time symmetric and so lead to equal cor-
responding probabilities for the two CPT-reversed sets of
decohering histories. This would also be true under the
alternative time-symmetric condition (18) of Gell-Mann
and Hartle [8], as they indeed carefully point out.

Thus our observations of an apparently time-
asymmetric history for our Universe [12, 13] do not yet
appear to rule out either time-symmetric possibility (6)
or (18), as is consistent with what Gell-Mann and Hartle
[8] noted. Possibility (6) is exemplified by the Hartle-
Hawking no-boundary proposal for the quantum state of
the Universe [14—18]. Emulating Wheeler [19], one may
say that our history of the Universe has "time asymme-
try without time asymmetry" of the probabilities. One
can summarize the situation by saying that not only
do asymmetric boundary conditions in the Gell-Mann-
Hartle sense [inequality (7)] not necessarily imply asym-
metric probabilities, but also that symmetric conditions
[with either the Gell-Mann —Hartle equation (18) or my
equation (6)] do not necessarily imply symmetric histo-
ries.

The question now arises how to interpret the arrow of
ordinary quantum mechanics in the formalism of Gell-
Mann and Hartle. In contrast to the analysis above,
which does not contradict any of their results, here I shall
make some speculative interpretative comments which
are my own views and are generally not held by Gell-
Mann and Hartle. Before doing this, I should note that,
as a consequence of the previous paragraph, both the
arrow of their formalism and the time symmetry of the
probabilities I have demonstrated (for commuting CPT
invariant initial and final conditions) are not testable
within any one individual history of the Universe (e.g. ,

ours) and therefore are both rather metaphysical. Nev-

ertheless, one can say very little if one attempts to be
a complete positivist, and therefore I shall continue to
consider how a nonphysical metaobserver might view the
entire Universe.

It seems to me that the asymmetry of the Gell-Mann-
Hartle decoherence functional has more to do with the
order and noncommutation of the density and/or projec-
tion operators than with any time asymmetry. It would
exist even when all of these operators are completely sta-
tionary as well as CPT invariant, in which case it seems
very unnatural to ascribe it to anything involving time.

The asymmetry seems to get associated with time be-
cause of the traditional rule of ordering the projection
operators in Eq. (2) in time order, which Gell-Mann
and Hartle have adopted in their formalism. They do
note [7—11] that one would get an equivalent result by
a CPT tranformation of the density and projection op-
erators which gives them an antitime ordering, but they
do not allow zigzags, in which the times in the successive
operators are not monotonically decreasing or increasing.

One might have thought that the probabilities for se-
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quences of alternatives would depend on the order in
which the operators are written down to form the string
C . This may indeed be true for nonadjacent operators
(or strings of them). However, it turns out that the order
of two adjacent substrings within a string does not afI'ect

the probabilities (so long as they exist for both order-
ings), as is shown by the following theorem (a general-
ization of the penultimate sentence of Sec. III of Hartle
[2o]):

Theorem 8. Consider a set of histories (a.)
((nl, a2, a3 a4)) represented by

A4 A3 A2 A] 4 2 3 jC~ = Co. C~3 ~2 ~1 = o.4co. ~3C~ (20)

with c, and c, interchanged. Then if both sets deco-
here, the corresponding probabilities are equal,

p(a) = D(a, a) = p(a) = D(a, a)
Proof To ab.—breviate the notation, let

C~ =C~, , CI = ) C~r =I —C~.

A, +0,,

Then the weak decoherence condition (4) implies

0 = Re Tr(pf c4c3c2cl p, cic2c3 c4)tt~tt
itt= Re Tr(pf c4csc2cl p, c,c2c4) —p(a),

Re TI'(pf c4csc2cl p&clc2c3c4)ttttRe Tl'(pf c4c3cl p&clc2c3 4) p(a)
0 = Re Tr(p fc4c3c2cl p~clc2c3 c4)tt&tt

Re TI'(pf c4c3cl p&cl c2c4)
—Re Tr(pf c4c3c2cl p, cic2c4)ttt
—Re Tr(p f c4c3cl p cl c2c3c4) +'p(a).t t t t

(22)

(24)

(25)

Combining Eqs. (23)—(25) gives

p(cR) Re TI'(pf c4c3cl p&clc2c4) (26)

Similarly, the corresponding weak decoherence condition
ReD(CI, a') = 0 for n g a' gives

p(a) Re Tl'(pf c4c2cl p clc3c4)' (27)

Now the cyclic property of the trace allows us to move

pf to the right end of the matri~ of Eq. (27), and then
this matrix is the Hermitian conjugate of the matrix of
Eq. (26). Thus the real parts of the traces are equal, Eq.
(21), Q.E.D.

Note that the c, 's can be projection operators, or
strings of them, or even sums of strings, but we do need a
coarse graining of (a) to include the four histories repre-
sented by C~ = c4c3c2c~, c4c3c2c~, c4c3c2c~, and c4c3c2c]
(not just the two histories C and I —C ), and similarly
for (a.).

4 3 2 1C~ = co.4co; c~ c~

(where each substring n, is independently allowed to take
on all possible values) and a corresponding zigzag set
(a.) = ((ni, a2, CI3 a4)) represented by
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To interchange two nonadjacent substrings or sums of
strings and get the same probabilities, we would need
three permutations to get them through the intermedi-
ate substring and through each other. Without assuming
that the two intermediate permutations also give deco-
hering sets of histories, the decoherence of merely the
initial and final sets is in many cases sufFicient for prov-
ing the equality of their corresponding probabilities, but
not always [21]. Thus a difFerence in the probabilities
appears to be possible.

Therefore, except possibly for the caveat of the last
paragraph, the motivation to exclude zigzags and keep
the projection operators in time (or antitime) order is lost
on me. Thus I am not convinced that the asymmetry that
arises from the order of the projection operators relative
to that of the density matrices should be associated with
the order of time. In other words, I do not see that
ordinary quantum mechanics with CPT-invariant initial
conditions gives any time asymmetry, at least for the
probabilities of an CPT-reversed pair of decohering sets
of histories, although in a different sense one could say
it is indeed quantum mechanics that allows nonunique
histories, each of which can be time asymmetric even
when the whole set of CPT-reversed pairs is not.

This paper was motivated by discussions with Murray
Gell-Mann and James Hartle and was phrased more pre-
cisely as a result of many further discussions with them,
for which I am deeply grateful, but it by no means repre-
sents their interpretation or meaning of time asymmetry,
despite the fact that there is no direct contradiction be-
tween our basic results. A comment by Stephen Hawking
on how his superscattering matrix for black hole forma-
tion and evaporation can lead to loss of coherence with-
out being time asymmetric was remembered after the
first part of this work was conceived and may have had
a subconscious inHuence.
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