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Phase Separation Model with Conserved Order Parameter on the Bethe Lattice
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We obtain an exact time dependent solution of the zero temperature Kawasaki-type dynamics of a
phase separation model on the Bethe lattice with arbitrary coordination number. We also do a direct nu-
merical simulation and show an excellent match between the analytical and numerical results. The
nonergodic dynamics leads to a frozen final state whose structure depends crucially on the initial condi-
tions.

PACS numbers: 82.20.—w, 05.40.+j

Of late, there has been much interest in studying sto-
chastic dynamical models describing the low temperature
phase separation and spinodal decomposition of binary
IIuid mixtures [1,2]. The dynamics in these models con-
serves the order parameter. It is this conservation law
which makes these models harder to study analytically as
opposed to the nonconserved case where several exact re-
sults are available, especially in d =1 [2-8]. For the con-
served models, the dynamics at T=O is essentially ir-
reversible (nonergodic) and often leads to frozen final
states whose structure strongly depends on the initial con-
ditions. This frozen domain structure resulting from the
T=0 dynamics is easy to understand in the context of
Kawasaki-type models with spin or particle exchange dy-
namics, which conserves the total magnetization or the
total number of each of the two species of particles. In
this case, the dynamics involves both annihilation and
diftusion of interfaces between the two phases. Each of
the dynamical moves has a certain statistical weight asso-
ciated with it. At T=O, the elementary move which
causes the maximum annihilation of interfaces has an
infinite Boltzmann factor compared to the other moves.
In the absence of diffusion and other moves, if the system
at any stage of its time development reaches a con-
figuration where no maximum annihilation move is possi-
ble, it just stays in that configuration. Thus, the dynam-
ics is nonergodic in the phase space and the final state de-
pends crucially on the initial configuration. Thus, al-
though the physics is simple, a full time dependent
analytical solution would be welcome in understanding
the nonergodic nature of the dynamics.

A recent move in this direction is the d =1 exact time
dependent solution of a zero temperature phase separa-
tion model with conserved dynamics of Privman [9] and
independently by Krapivsky [10]. Models of this kind
were previously studied numerically by Levy, Reich, and
Meakin [11,12] for d= 1 to 5. The d) 1 models are
somewhat diff'erent from the d=l case. However, at
T=O they are believed to share the common feature of
frozen domain structure at large time. In this Letter, we
solve this T=O phase separation model exactly on the
Bethe lattice, which corresponds in some respects to
d =+~, and compare our exact results to our direct nu-
merical simulations. To our knowledge, it is the first solv-

able model in d & 1 in the conserved case. This model on
the Bethe lattice was studied numerically at nonzero tem-
perature by Palmer and Frisch [13]. They found com-
plete phase separation, with the density of interfaces
tending to zero at large time. Our exact solution at T =0
clearly shows that the final state has a frozen domain
structure, confirming that T=O dynamics is very dif-
ferent from that of T & 0. We would like to mention at
this point that our solution is not a simple generalization
of the d =1 solution. Indeed, on the Bethe lattice we will

see that topological eAects are important, which were ab-
sent in the d=l case. This fact makes the d=l model
difTerent from those in higher dimensions, and enabled
Privman and Krapivsky to obtain their exact solution. In

fact, we will recover the d=l exact result as a special
case of our more general solution on the Bethe lattice,
when the coordination number is 2.

We consider the phase separation model of a binary
Auid of A and 8 with nearest neighbor particle exchange
dynamics on the Bethe lattice with coordination number
Z. Each site of this Bethe lattice is occupied by either
one A or one 8 particle. Moreover, two neighbors of
diA'erent species can be exchanged if and only if the num-
ber of interfaces in the Auid is decreased by the max-
imum amount by this move. In the case of a Z =3 Bethe
lattice, this corresponds to a bond AB with a local envi-
ronment as shown in Fig. 1(a). In this case, there are five

interfaces before the move and only one after [Fig. 1(b)].
Allowing only this kind of move, we do not expect the two
phases to completely separate, but to form a frozen struc-
ture which can depend on the initial conditions. The nat-
ural possible initia1 conditions are the alternating and the
random one, although our result will be applicable to
more general initial conditions. In the alternating case,
each particle A (B) is surrounded by Z B's (A' s). In the
random case, each site is randomly occupied by A or B,
with equal probabilities. The quantity one is usually in-
terested in is the time dependence of the concentration of
interfaces, and especially its asymptotic value (r =+~).
Some other quantities such as the distribution of the sizes
of connected clusters of A's are also of interest.

Consider a cluster of n connected sites. This will be a
fully alternating cluster if and only if all its sites have op-
posite particles on all Z of their nearest neighbors. The
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FIG. 1. (a) The two letters of the central AB bond can be
exchanged since this move decreases the number of interfaces
by the maximum number, which is 4 in the Z =3 Bethe lattice.
(b) The configuration of (a), after the move. (c) The dotted
line encircles a fully alternating cluster with n =5.

cluster is also characterized by its shape or topology T.
An example of such a cluster with n =5 is shown in Fig.
1(c), for the Bethe lattice with Z =3. Now, we define
P(n, T, t), the probability that at time t a randomly
chosen cluster of size n and topology T is a fully alternat-
ing cluster. In the d=1 case, there is only one possible
topology for a given cluster size, so that P(n, T, t) only
depends on n and t. The crucial observation in solving
the d =1 model [9,10] was that the time evolution of the
P(n, t)'s is much easier to write than that of the
P,„(n,t)'s [14], the probability of occurrence of a fully
alternating cluster of size n that is not part of a larger
fully alternating cluster. In the present case, the extra
dependence on topology makes the problem apparently
much harder. The evolution equation for P(n, T, r), in

the bulk, reads

I'
(n, T, t) =b(n, T)P(n, T, t)+ g P(n+ I, T', t)

i Pe C'(v)

+ g P(n+2, T",r ),
T" e c"(T)

where b(n, T) is the number of internal bonds of the con-
sidered cluster. In general, it depends on both n and T.
However, for the Bethe lattice, b(n, T) =n —1. The first
term on the right-hand side of (1) refers to the decay of
probability due to the exchange of particles within the
cluster. The two last terms are due to exchanges which

P(n, r) =aexp Z
(r ) n+ 2/tz —2) (3)

Z —2

where a„„=2 and a, ~&
=1 and s(t) satisfies a sim-

ple diA'erential equation:

c6 = —s —(Z —2)s —(Z —1)(Z —2)s
dt

s
~
(0)=1, s „(0)=2

(4)

involve the neighbors of the cluster. The neighbors of the
cluster are the sites outside the cluster with at least one
neighbor inside the cluster. For instance, the second term
describes the exchange of a neighbor of the cluster with
one particle inside the cluster. So, the summation in the
second term runs over the set 8' of all fully alternating
clusters of size n+1 which contain the alternating cluster
of size n and topology T. The number of terms in the
sum is equal to the number of outgoing bonds from the
cluster. Thus, a given T' may appear more than once in

the sum depending on whether the neighbor site has more
than one neighbor in the cluster. For the Bethe lattice,
we note that there are n'=n(Z —2)+2 such clusters in

C'(T), for a given T, and each T' appears only once in

the summation. Similarly, the third term refers to the ex-
change of a neighbor of the cluster with a site outside the
cluster, and the summation runs over the fully alternating
clusters of size n+ 2, which contain the elements of
C'(T). For the Bethe lattice, there are n" =(Z —1)n'
such clusters in 6 "(T). Thus, we notice that on the
Bethe lattice, these numbers n' and n" do not depend on
the topology T explicitly. For lattices containing loops,
such as hypercubic lattices, n' and n" do depend on the
topology. This fact is crucial in obtaining our exact solu-
tion for the Bethe lattice.

In fact, Eq. (I) is very general and applies to hypercu-
bic lattices as well. However, the explicit topology depen-
dence makes it harder to tackle analytically. But, for the
Bethe lattice, we notice that if the initial condition is to-
pology independent, i.e., P(n, T,O) is independent of T,
then P(n, T, t) remains independent of T for all subse-
quent times. This is because the dynamics given by (1)
does not generate any topology dependence. This is of
course the case for the two most "natural" initial condi-
tions considered here, for which we have P,. (nu, T,O) =1
and P„,„(n,T,O) =2 " ' +' . Note that the fact that
the ratio of n' and n" does not explicitly depend on n is

special to the Bethe lattice case and is another reason for
obtaining the exact solution. Finally, if the initial condi-
tion is topology independent, (1) reduces to an effective
(but exact) evolution equation, which now only involves

the size of the considered cluster:

(n, t) = (n —1)P(n, t)+ [n(Z —2)+2]P(n+ l, r)BP
r)r

+ (Z —1)[n(Z —2)+2]P(n+ 2, r ) . (2)
For Z & 2, the solution of this equation consistent with
the initial conditions is of the form
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The function t(s) can be easily computed from (4), but
there is no simple way of expressing s as a function of t.
An important feature of s(r) is that it behaves like

s;„;texp( —r) when r +~, where the constant depends
on the initial conditions and can be exactly computed in

the alternating and random case. It shows that all the
P(n, r)'s go to 0, except P(l, r) which goes to a constant
which measures the density of 8's surrounded by Z 8's at
infinite time. A more interesting quantity is certainly the
density of interfaces, I(t). Since all alternating config-

urations with n =2 will flip as shown in Fig. 1, decreasing
the number of bonds by 2(Z —1), the evolution equation
ofl(r) is

dI (r) = —2(Z —1)P(2,t), I, i(0) =1, I„„(0)=-,' .
t

Combining the form of P(2, t) given in (3) with the last
equation, and taking into account the diferent initial con-
ditions, we obtain

~ s(0)
l(r) =I(0)— [1+(Z—2)u+(Z —1)(Z —2)u'] ' z' "z "f(u)du,f(g (0) ) & s(t)

f(u) =exp' Z
tan

, J(z —2) (3z —2)

c =2(z —1) """

Z —2

3Z —2
[2(Z —1)u+ 1]

(6)

(Z 1 )22(z —I )/(z —2)

[22(z i)+ (Z 2)2z —1+ (Z 1)(Z 2)] z/2(z —2)

The asymptotic value of I(t) is obtained by substituting
s(+ee) =0 at the lower limit of the integral. We note
that in the Z =2 case, which corresponds to d =1, (1) is

trivially equivalent to (2) and reproduces the recent result

by Privman [9,10]. However, as shown by (3)-(6) the
nature of the solution is very diA'erent in the Z & 2 case.
Note that the solution (6) goes smoothly to Privman's
solution despite the apparent singularity at Z =2. Some
values of I(+ ee) are given in Table I. The main feature
is that the density of interfaces is an increasing function
of Z in the random case. In the alternating case, it has a
minimum for Z=3. In addition, except for Z=4, one
has I,~t & I„„,which means that the alternating initial
configuration is more frustrated than a typical random
configuration. For very large Z, the final density of inter-
faces is the same as the initial one. This is due to the fact
that one exchange forbids many further exchanges in the
neighborhood. Therefore, the final frozen state the sys-
tem reaches is close to the initial one.

In the following, we restrain ourselves to the Z =3 case
for which we have performed numerical simulations on
lattices of size up to M=2 ' sites. We would like to
stress the fact that our study concerns the bulk properties
of the Bethe lattice which are defined in the following

way. First let us make the size of the Bethe lattice go to
infinity. Take a finite subset of this lattice of size N and
average a given quantity, say l(t), on this subset. The
bulk value of the observable is the limit of this average
when N +~. If one starts from a finite sample the
average will depend on how many surface shells are re-
tained to perform the average. In Table II, we present
I(+~) as a function of the number of discarded shells
for the two initial conditions considered here. The
boundary eAects are stronger in the alternating case as
one might expect, but the numerical results are very close
to our exact result after 7-8 shells are discarded. In the
random case, the limiting value seems to be reached
much faster.

Note that our simulation was performed by picking
successive random bonds on the lattice, which are flipped
when possible. Indeed, our solution (1)-(6) describes the

TABLE If. Asymptotic density of interfaces for the alternat-
ing and random initial conditions as a function of the number of
discarded surface shells to perform the average (2000 samples
of %=22' =2097152 sites for. Z=3). The standard error is

less than 3.0&10 in all cases, and decreases when shells are
added.

Iau

0.450 898
0.436061
0.465 548
0.499 634
0.531 444
1

Iran

0.362 957
0.427 627
0.468 485
0.487 955
0.495 841
0.5

TABLE I. Asymptotic density of interfaces given by (6), for
the alternating and random initial conditions as a function of Z.

Ia[t

0.5493
0.4235
0.3017
0.4337
0.4596
0.4124
0.4337
0.4420
0.4359

Iran

0.4581
0.4399
0.4219
0.4276
0.4278
0.4277
0.4275
0.4276
0.4276
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continuous time asynchronous dynamics of interfaces,
where the exchange moves are independent of each other,
with an exponential waiting time distribution. In our
simulations, after 4M bonds are visited randomly, one
last ordered sequential inspection starting from a root site
is made in order to flip the few bonds which were not
visited by the random inspection (in general less than
10). If one performs such a sweep directly on the initial
configuration, the value of I after the sweep is very
diA'erent from our result. For instance, for Z=3 and in

the alternating case, the value of I after the sweep is ex-
actly —,

' instead of the larger value I(+~) =0.436061. . .
given by (6). In the random case, this value can be ex-
pressed as a simple series and goes to 0.447. . . , which is

bigger than our result 0.427627. . . .
In summary, an exact time dependent solution has been

obtained for the concentration of interfaces in a T=0
phase separation model with conserved order parameter
on the Bethe lattice. It would be interesting to compute
also the full time dependent correlation functions, e.g. ,
the probability of occurrence of a cluster of a given size,
containing only 2's (or B's). These correlation functions
can be computed exactly for the d= 1 case [14]. The
finite temperature dynamics where diAusional moves are
allowed seems hard to solve exactly. But, at least an ap-
proximate solution with only certain moves allowed would
be interesting and welcome.
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