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The complex dielectric constant of Rbp, 4p(ND4)p, epD2PO4 has been measured in the frequency
interval from 1 mnz to 1 GHz at temperatures between 40 and 140 K. A novel frequency-temperature
plot of the data is introduced to show that the behavior of the relaxation spectrum is rejected in the
real part of the dielectric constant. It is found that the highest relaxation frequency f2 = 1/2vrr
follows an Arrhenius behavior, whereas the lowest frequency fi = I/2vrr exhibits a critical decay
according to the Vogel-Fulcher law fi oc exp[ —U/(T —To)] with To = 32.9 K.

PACS numbers: 77.22.Gm, 64.70.Pf, 77.22.Ej, 77.90.+k

Mixed crystals Rbi (ND4) DzPO4 or their deuter-
ated isomorphs (DRADP) exhibit in the intermediate
concentration range 0.2 & x & 0.7 the characteristics
of a deuteron glass [1]. Specifically, a slow nonexponen-
tial relaxation of remanent polarization and a splitting
between the zero-field-cooled and field-cooled dielectric
susceptibilities have been observed below a characteris-
tic temperature Ty [2]. The observed value of the freezing
temperature Tf in DRADP depends on the experimental
time scale, suggesting that the freezing process itself is
a dynamic phenomenon. In common with other glassy
systems, the relaxation process in DRADP is polydisper-
sive and thus characterized by many time scales [1]. As
one approaches the freezing transition in a spin glass, the
maximum relaxation time is expected to diverge [3,4] ac-
cording to the Vogel-Fulcher law with a critical tempera-
ture To. Clearly, the concept of an equilibrium transition
temperature is meaningful on an infinite time scale only
and thus the following two questions may be raised: (i)
Can the static value of Tf be determined in a real experi-
ment carried out on a finite albeit long —time scale; (ii)
how is the freezing temperature Tf related to the Vogel-
Fulcher temperature To?

In this Letter we present a discussion of the above
problems in the light of new experimental data for the
dielectric relaxation in DRADP at x = 0.60. Earlier
experiments performed on deuterated and undeuterated
samples have indicated that the dynamic processes can be
described within the so-called parallel relaxation picture,
i.e. , as an integral over a set of Debye-type exponential
relaxations with a broad distribution of relaxation times
[1,4,5]. Various attempts at determining the relaxation
spectrum were described in the literature, such as using
a symmetric Gaussian distribution [6], or a Frohlich-type
distribution with smooth edges [7]. By adopting a Vogel-
Fulcher ansatz for the relaxation frequencies, Courtens
has shown that the dielectric loss data in a broad fre-
quency range can be mapped onto a single curve [1].
This Vogel-Fulcher scaling yields a critical temperature
To ——30.3 + 0.7 K for DRADP with x = 0.62, a value
much lower than the freezing temperatures Tf = 90 K
and Tf = 60 K estimated from model calculations [8]
in connection with NMR [9] and field-cooling data [2],

respectively, obtained on samples with comparable con-
centrations. This discrepancy clearly suggests the impor-
tance of time-scale effects in deuteron glasses.

The frequency-dependent complex dielectric constant
e'(v, T) = s' —is" provides rather direct information on
the dynamic processes occurring in deuteron glasses. In
order to investigate the relaxation spectrum of DRADP,
we have carried out an extensive experimental analysis
of the dielectric relaxation along the tetragonal crystal-
lographic a axis. A system with suitable concentration
was chosen, namely, x = 0.60. The measurements were
performed between 40 and 140 K on two samples cut
from the same DRADP single crystal. The frequency
range from 1 mHz to 1 GHz was covered by three differ-
ent techniques: (a) The Sawyer-Tower bridge technique
was used in the frequency range from 1 mHz to 1 Hz.
The polarization charge was measured by means of an
electrorneter. A computer was used as a digital phase
detector and the real and imaginary parts of a complex
dielectric constant were extracted by the least-squares
method. (b) The frequency dependence of the complex
dielectric constant between 20 Hz and 1 MHz in the tem-
perature interval 40 to 80 K was measured using a HP
4284A Precision LCR meter. Both techniques were used
successively on the same platelet of DRADP with dimen-
sions 1 x 4 x 5 mm, in the temperature interval between 50
and 60 K. (c) Because of a steady increase of relaxation
frequencies on increasing the temperature, the high fre-
quency measurements from 1 MHz to 1 GHz above 68 K
had to be performed by the HP 4191A RF Impedance An-
alyzer. In the temperature interval from 68 to 80 K the
techniques (b) and (c) complemented each other. High
frequency measurements were performed in separate runs
from 68 to 140 K on a different platelet approximately 1
mm high and 7 mm in diameter, which was fixed at the
center of a radial line, thus terminating the coaxial reHec-
tometer. The temperature of the samples was monitored
and stabilized to within +0.1 K by an Oxford Instru-
ments continuous fIow cryostat. The dielectric constant
was always determined on slowly cooling (= 1 K/min)
the system.

In Fig. 1 a set of representative Cole-Cole diagrams
are shown, where e" is plotted as a function of e' at
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FIG. 2. Frequency-temperature plots of the data for sev-
eral fixed values of the reduced dielectric constant b. Top to
bottom: b = 0.01, 0.03, 0.06, 0.12, 0.23, 0.33, 0.89, 0.98. The
curves are fits obtained with a linear approximation Eq. (3)
for the relaxation spectrum.

FIG. 1. Measured values of e" plotted vs e' in DRADP
(z = 0.60) at four temperatures, as indicated. Solid lines are
fits obtained with a general multiparameter expression for the
relaxation distribution.

four diferent temperatures. The curves represent fits
to a general expression of the type of Eq. (1) below, us-

ing a rather general form for the relaxation distribution
function of g(ln f); however, we will not describe the de-
tails of this procedure here. At high temperatures, the
frequency dependence of the complex dielectric constant
s*(v, T) shows a nearly monodispersive relaxation; how-

ever, at lower temperatures the dielectric relaxation in
DRADP becomes strongly polydispersive [10].

To describe such complicated behavior uniquely in the
entire temperature range, we represent the data for the
real part of the complex dielectric constant s'(v, T) in
the following way. First we express, as usual, s'(v, T) as
a sum of Debye relaxations [1,10],

s'(v, T) —s

&s —&oo

'JJ2
g(y) dy

1+ (v/f ) exp( —2y)

where y = ln (f/f ) with f = 1/2vr~ representing the re-
laxation and f an arbitrary attempt frequency, respec-
tively, and g(y) is the distribution of relaxation frequen-
cies. We assume that g(y) extends over a finite frequency
interval yi ( y & y~.

Next, we introduce a new symbol for the reduced di-
electric constant appearing in Eq. (1), i.e. ,

I

(2)

The essential step now is to regard 6 as an independent
parameter. This implies that at any given temperature
T a frequency v must be found at which the prescribed
value of 6—and therefore of e'—is reached. As one scans
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e' from e~ to e„ the parameter 6 varies from 0 to 1. In
practice, this procedure may require an interpolation be-
tween the available discrete experimental points s'(v, T)
in order to obtain a fixed value of 6, and hence the corre-
sponding value of v(T, 6). The parameters s, and s are
actually known from the static and the high frequency
data, respectively, and are thus independent of the dis-
tribution function g(y). We will discuss this point in
more detail later.

Focusing on Eq. (1), we realize that the frequency v
specifies the position of the frequency filter represented
by the factor 1/[1+ (v/f ) exp( —2y)] under the inte-
gral. Because of the steplike shape of this filter, which
electively opens in a unit frequency interval around

y —ln(v/f ), and since the distribution function g(y)
extends itself over many orders of magnitude in the fre-

quency domain, we conclude that at low values of c', i.e. ,

b close to 0, the relaxation processes arising from the high
frequency part of the distribution function determine the
value of the integral. In contrast, as 6 —1, the whole
relaxation spectrum contributes and the frequency filter
probes the shape of g(y) near its lower edge yi.

To illustrate the above qualitative argument, we have
plotted in Fig. 2 the frequencies v(T, 6) vs 1/T for a set
of fixed values of 6. Ignoring for the moment the solid
curves, it is obvious that the data corresponding to small
values of b show a nearly linear behavior. This, in turn,
suggests an Arrhenius-type behavior for the relaxation
frequencies near the high frequency edge of the distri-
bution function. On the other hand, for b ~ 1, the
frequency v falls oK dramatically as the temperature is
lowered. Such behavior is then indicative of a divergence
of the lower edge yi of the distribution function.

To determine precisely the temperature dependence of
the lower boundary of the relaxation spectrum, we now
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need a specific model for the distribution function g(y).
The solid curves in Fig. 2 are fits to a simple linear ansatz
for the relaxation spectrum:

g(y) = 2(y —yi)/(yz —yi)' yi & y & yz, (3)

with y = ln (f/f~), yi = ln (fi/f ), and yz = ln (fz/f~)
Again, f is the relaxation frequency, while the fit param-
eters fi ——I/2~r ~„and fz =- I/2vrw;„represent the
low and the high frequency edge, respectively, of the re-
laxation spectrum. In accordance with the qualitative
arguments given above, we assume a Vogel-Pulcher tem-
perature behavior for fi, i.e. ,

fi = foi exp [ U/(T ——To)],

and similarly an Arrhenius-type behavior for fz,

fz = foz exp( E/T). — (5)

The solid curves in Fig. 2 are least-square fits by Eqs.
(4) and (5), resulting in the following values for the pa-
rameters: To = 32.9+0.5 K, foi = (5.5+2.0) x 10 Hz,
U = 770+70 K, fpz = (1.8+0.6) x10 Hz, E = 980+70
K.

We have also tried to describe the critical divergence
of the lower boundary of the relaxation spectrum with a
more complicated ansatz [11]:

fi = fpi(T/Tp —1) exp [ U/(T —Tp—) ],

based on the theory of critical hierarchy [11,12]. It turns
out that the divergent behavior of fi is practically the
same as above. Namely, by fitting the parameters in Eq.
(6) to the data in Fig. 2 we obtain n = 0.01 6 0.01,
P = 0.97 + 0.03, and To = 32.7 +0.5 K. Thus the simpler
relation (4) adequately describes the critical divergence
of the lower edge of the relaxation spectrum.

It should be noted that the linear shape of g(y) has
been chosen in order to describe the low frequency cut-
off' of the relaxation spectrum and is by no means unique.
Satisfactory fits can also be obtained by employing a
Frohlich boxlike distribution [13] with the edge frequen-
cies still given by Eqs. (4) and (5), in which case the
evaluation of v(b', T) from Eq. (1) can be done analyti-
cally. This clearly suggests that it is the asymmetric be-
havior of fi and fq, and not so much the actual shape of
g(ln f), which is responsible for the asymmetric features
of the frequency-temperature plots in Fig. 2. If, for exam-
ple, one assumes a Vogel-Fulcher scaling of all relaxation
frequencies, f = fo exp [ U/(T —To)], the cu—rves at dif-
ferent b values become nearly parallel and asymptotically
diverge at the same temperature Tc, in disagreement with
experiment.

The present picture has two major advantages. First,
it clearly indicates the divergence of the lower bound-
ary of the relaxation spectrum without the need for any
crucial assumptions about the shape of the relaxation
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FIG. 3. Temperature dependence of the parameter e, (+)

obtained from Eq. (1) and the field-cooled static dielectric
constant eFo (~ ) from Ref. [2}. Also shown is e'(v, T) at var-
ious frequencies v: 500 kHz ( ), 10 kHz (D), 324 Hz (o), 1

Hz (~), 1 mHz (o).

spectrum or, in fact, any model at all. Second, only the
real part Of the complex dielectric constant is involved,
which can be measured much more accurately, especially
at extremely low frequencies. Thus the data obtained
at low temperatures, where the relaxation process starts
to escape out of the experimental frequency window and
which cannot be analyzed accurately enough in the Cole-
Cole picture, are still useful in the b picture, so that the
experimental temperature interval has been effectively
extended.

The parameter s, appearing in Eq. (1) represents the
low frequency limit of the real part of the dielectric con-
stant and is essentially obtained by extrapolating the
measured values of s'(v) to zero frequency. This seems
to imply that the analysis strongly depends on the shape
of the distribution function through the parameters e
and e, ; however, this is not the case for the following
two reasons. First, e can be measured directly and
very precisely at high frequencies below 70 K where it is
essentially temperature independent. Second, and per-
haps even more important, z, is independently known
from static experiments. To illustrate this point, in Fig.
3 the values of s, are plotted (crosses) versus the tem-
perature down to 50 K. It can easily be seen that e, has
precisely the same temperature dependence as the field-
cooled static dielectric constant obtained in earlier charge
monitoring experiments [2]. Above 50 K, the field-cooled
and zero-field-cooled static susceptibilities, spc and szF~,
respectively, were found to be equal on the experimental
time scale. The experimental time scale of a zero-Geld-
cooling experiment t,„p is determined by the longest time
in which the polarization charge is allowed to build up
after switching on the field, i.e. , 8e p 3000 s at low
temperatures. Also shown in Fig. 3 are the data for the
field-cooled dielectric constant spc [2] (full circles) below
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50 K. The corresponding freezing temperature Tf, which
may be defined as the point where the splitting between
ape and zzFc occurs, must therefore lie in the region
below 50 K for the above time scale.

Returning to the case of a dielectric relaxation experi-
ment, we conclude that the time scale is here essentially
determined by the measuring frequency, i.e. , t,„~ —I/v.
To illustrate how this time scale affects the behavior of
the low frequency dielectric constant, we have plotted in
Fig. 3 the real part s'(v, T) for five different values of v. It
seems natural to associate the points where e'(v, T) starts
to differ from the "true" static dielectric constant with
the freezing temperature Tf (t,„~), namely, the ternpera-
ture where the splitting between ape and zzpc would oc-
cur in a field-cooling experiment on the same time scale.
One may then argue that Ty (t,„~) marks the point where
the measuring frequency starts to exceed the lowest relax-
ation frequency, i.e. , v & fq Thus. , since 7. „=I/27rfq
diverges as T —+ To, we realize that To corresponds to
Tf (oo), i.e. , the "static" or equilibrium value of the freez-
ing temperature, which would in principle be observable
only in a static experiment on an infinite time scale.

It should again be stressed that the present study em-
phasizes the need for a dynamic description of the freez-
ing process in deuteron glasses and related systems. Al-
though static microscopic models have been useful for the
discussion of NMR and other experiments carried out at
temperatures above Tf, their extension to dynamic prob-
lems is far from trivial in view of the breaking of ergodic-
ity which occurs at the glass transition. One may wonder
in this context why the conventional static description of
the freezing transition, according to which the spin glass
order parameter q(T) is zero above the freezing temper-
ature Tf and nonzero below, could not be applied here.
The point is that in deuteron glasses and related systems,
q(T) is always nonzero due to the presence of random
fields [8]. Rather than rely on some model-dependent ar-
guments to obtain an alternative static definition of Tf
[2,9], we have adopted here the phenomenological con-
cept of a dynamic ergodic-nonergodic spin glass transi-
tion [12]. Actually, phenomenological models based on
hierarchically constrained dynamics do correctly capture
many of the features of glassy relaxation [3]. In par-
ticular, the relaxation is predicted to occur over many
time scales with the maximum relaxation time ~ di-
verging according to the Vogel-Pulcher law. Further-
more, the time dependence of the dielectric relaxation
function is predicted to be of the Kohlrausch-Williams-
Watts (KWW) form, i.e. , 4(t) = exp[ —(t/w)~], and thus
e*(v) = e —(e, —e~) f, dt exp( —ivt) dC/dt An ex-.
pression of this type has recently been applied to a pro-
ton glass [14]. In the present case, however, it turns out
that the KWW function gives a satisfactory fit only at
temperatures above 100 K. As the temperature is low-
ered, the asymmetry predicted by the KWW law does
not match the data, i.e. , the low frequency side of the
Cole-Cole diagram in Fig. 1 would increase very steeply,
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contrary to observation (cf. Ref. [7]).
In conclusion, the method of data analysis suggested in

the present work provides a powerful tool to determine
the behavior of the edge frequencies of the relaxation
spectrum close to the freezing transition in deuteron
glasses. Though the present empirical model may be re-
garded as perfectly general, it does not provide insight
into the microscopic mechanism of glassy relaxation since
the appropriate theoretical model of relaxation phenom-
ena in complex systems is still missing. Formally, our
results seem to lend support to the theory of hierarchi-
cally constrained dynamics. In particular, they give clear
evidence that the maximum time scale diverges according
to the Vogel-Fulcher law as one approaches the freezing
transition; however, the relaxation function cannot be
described by the K&% stretched exponential form fa-
vored by most dynamical models. Thus a need emerges
for alternative phenomenological expressions describing
the relaxation function in the time domain, and more-
over, for appropriate dynamic models capable of explain-
ing the observed relaxation behavior.
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