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We examine a model of M-component quantum rotors coupled by Gaussian-distributed random,
infinite-range exchange interactions. A complete solution is obtained at M = oo in the spin-glass
and quantum-disordered phases. The quantum phase transition separating them is found to possess
logarithmic violations of scaling, with no further modifications to the leading critical behavior at any
order in 1/M; this suggests that the critical properties of the transverse-field Ising model (believed
to be identical to the M ~ 1 limit) are the same as those of the M = oo quantum rotors.

PACS numbers: 75.50.Lk, 75.10.Jm

Extensive attention has been lavished in the last
decade on the finite-temperature properties of classical
and quantum spin glasses [1—5]. In contrast, there has
been almost no work on the T = 0 properties of quantum
spin glasses, and, in particular, on the quantum phase
transition from a spin-glass to a quantum-disordered (or
"spin-fluid" ) state. The critical properties of this quan-
tum phase transition have so far been obtained only for
a one-dimensional model [6] which is unfrustrated in the
classical limit. On the experimental side, there has been
a rene~ed interest in a number of spin systems which
are in the vicinity of a T = 0 phase transition from a
spin-glass to a spin-fluid state [7—11]: these include the
dipolar, transverse-field Ising magnet LiHo Yi ~F4 [7],
the lightly doped cuprates [8—10], and various layered
transition-metal/rare-earth oxides [11].

In this paper we examine a quantum spin glass which
allows us to examine more carefully the nature of the
quantum spin-glass to spin-fluid phase transition and
determine. the spectrum of excitations in the spin-fluid
phase. We consider M-component quantum rotors with
Gaussian-distributed random, infinite-range exchange in-
teractions. A complete solution of this model will be ob-
tained at M = oo in both the spin-glass and spin-fluid
phases and at the critical point separating them. We
also examine the nature of the 1/M corrections at T = 0
in the spin-fluid phase and at the critical point: we find
that the form of the leading critical behavior and the
low-frequency spectral weight remains unmodified to all
orders in 1/M from the M = oo result. Thus the re-
sults of this paper could have been derived without any
reference to the 1/M expansion, by simply resumming
Feynman graphs which are dominant at low frequency—these graphs happen to be identical to those selected
by the M = oo theory.

The quantum rotors shouM not be confused with true
quantum Heisenberg spins present in any isotropic anti-
ferromagnet; the different components of the rotor vari-
ables all commute with each other, unlike the quantum
spins. As a consequence, the path integral written in the
rotor variables has an action which contains no Berry
phases and is purely real. The properties of random

quantum spin models are quite different from those of
the quantum rotors considered here, and will be discussed
elsewhere [12]. Apart from its theoretical simplicity, the
main utility of the rotor model is that the M = 1 limit of
the path integral is expected to be in the same universal-
ity class as the Ising model in a transverse field. The ab-
sence of any 1/M corrections, noted above, suggests that
the critical behavior of the infinite-range, transverse-Geld
Ising model is identical to that of the M = oo limit solved
in this paper. This is also consistent with a recent anal-
ysis of this Ising model by Huse and Miller [13]: their
results for the critical point are essentially identical to
those obtained below in the M = oo model.

We will study the following ensemble of Hamiltonians:

) L'+ ) Jnn„
i&j

n, =1, (1)

where i, j extend over N sites, n,„are the M compo-
nents of a unit-length rotor n, on site i, the L,„(p,( v,
p, v = 1, . . . , M) are the M(M —1)/2 components of
the angular-momentum generator I, in rotor space, and
the J,~ are mutually uncorrelated exchange constants se-
lected with probability P(J,j) exp( —J,~/2J ). The
n, & are mutually commuting variables and the quantum
dynamics is defined by the commutation relations

[Lzy& & nj ~]:lb' (6ii~nj & 6&&nj p) ~ (2)

The L,„satisfy the commutation relations of angular
momenta in M dimensions. As g ~ 0, the model reduces
to the classical, infinite-range, M-component, Heisenberg
spin glass which was analyzed earlier by de Almeida et
al. [14].

The formulation of the N —+ oo limit of H can be ob-
tained by a straightforward generalization of the analys'es
in Refs. [2—4]. We use the path-integral formulation of
the partition function, introduce n replicas, and average
over the ensemble of the J,~. The N —+ oo limit yields a
saddle point which describes the quantum mechanics of
n replicas of a single rotor. Assuming the saddle point
is O(M) invariant (this is true in both the spin-fluid and
spin-glass phases) we obtain the single-site path integral
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Zo = 'Dn (~)6(n (~) —1) exp
~

—— d~(B n ) + d~d~'Q (~ —~')n (r) n (~')
2g o 2 o

(3)

and the self-consistency condition

(4)

Here a, 6 = 1, . . . , n are replica indices, ~, w' are Matsub-
ara times, and P = 1/T. The Edwards-Anderson order
parameter [1] for the spin-glass phase is

(5)

Moreover, Q ~, a g b, is w independent and nonzero only
in the spin-glass phase [4].

An exact evaluation of Zo is clearly not possible. We
present below the results of a systematic 1/M expansion
on Zo.

M = oo theory. —Imposing the const;raint by a La-
grange multiplier A, the M = oo limit of Eqs. (3) and (4)
reduces to the constraint Q ~(~ = 0) = 1 and

Q(2'~) = g M~ + A —gJ Q(ZM~)

where Q(iu„) is the Fourier transform of Q(w) at the
Matsubara frequencies, and the right-hand side is a ma-
trix inverse in replica space.

(1) Paramagnetic phase: For large g, or large T, we
expect a paramagnetic phase (the quantum-disordered
phase is the T = 0 paramagnetic state) in which case
Q ~ will be replica diagonal [3,4]. A closed-form solution
can. be obtained from (6) for the spectral weight y"(u) =
Im[Q (~ + i0+)]:

(~o —A + 2Jg) (A + 2Jg —~2)
=sgn w 2J g

for A —2Jg & u ( A + 2Jg and g" = 0 otherwise. It is
clear that a physically sensible solution requires A ) 2Jg
where A is determined by the constraint equation n
1, or

par ametrize

(9)

where Q„~(iur„) can be obtained immediately from the
solution of (6) and continues to have spectral weight
g",, (u) which obeys (7) with a value of A to be deter-
mined below. We pararnetrize the oK-diagonal compo-
nents of Q ~(ice„= 0) by an arbitrary hierarchical ma-
trix [15] specified by a monotonic function Pq(x) on the
interval 0 ( 2: & 1. Using the expressions for the inverse
of a hierarchical matrix in Ref. [16], the self-consistency
equation (6) can be transformed into two integral equa-
tions for q(x) and qFA. Simple algebraic manipulations
then yield the satisfactory [1] result

qEA = q(1).

Repeated differentiation of the integral equations showed
that dq/dx = 0; q(x) can therefore only be a piecewise
constant function. We chose q(x) = qi for 0 ( x ( u and

q(x) = qEA for u ( x ( 1, whence the integral equations
specified q~

——0 and qEA, u, however, was left undeter-
mined [16]. It was then necessary to evaluate the free
energy and demand stationarity with respect to u. The
final result was quite simple: we found u = 0 implying
that q(x) = qFA for all x and that the replica-symmetric
solution is optimal. This agrees with the classical limit
at g = 0 which was found in Ref. [14] to possess a stable
replica-symmetric solution at M = oo; we also undertook
a stability analysis, similar to that in Ref. [14], for the
quantum-rotor model and found only non-negative eigen-
values in the fluctuations about the replica-symmetric

1.5

g"(io)coth(P~/2) = l. (8) Thermal
fluctuations

It is evident from (7) that the M = oo paramagnet has
a gap of (A —2Jg) /2 towards spin-wave excitations. We
expect 1/M fiuctuations to fill in this gap at any finite T;
the gap in the T = 0 spin-Quid phase, however, is robust
towards such corrections. The paramagnetic —spin-glass
phase boundary is determined by setting A = 2Jg and
solving (8) for a line in the g Tplane: the resu-lts of this
calculation are shown in Fig. 1. The quantum transition
near T = 0 occurs at g = 9a J/16 —3T2/J+, and the
classical transition near g = 0 occurs at T = J —g/12 +

; this latter result agrees with that of Ref. [14].
(2) Spin glass phase: We now e-xpect only Q ~(iw„=

0) to acquire off-diagonal components [3,4]; the fi-
nite frequency Q(uu ) remains diagonal. We therefore
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FIG. 1. Phase diagram of 0 in the T-g plane at M = oo.
The line g = 0 corresponds to the classical model of Ref. [14].
The quantum-disordered phase is the paramagnet at T = O.
Regions in which the spin Auctuations are primarily thermal
or quantum are noted.
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state. Our final results for the spin-glass phase were
A = 2Jg with y,",s(w) given by (7) being gapless over
the entire phase, Q ~(ice„= 0) = PqEA for a g b, and

QEA=&—
BCd I(g,", (~)coth(Pcs/2).

y"((u, T = 0) = cisgn(cu)~cu~"Cg
~

&&g
(12)

where the frequency scale Ag obeys Ag = cq(bg)'"/
log ~ (1/6g) for small bg, the exponent p = —1 +
P/(zv) = 1 [10], ci, cq are nonuniversal constants, and
C~ is a universal function given by

@( )
(1 —1/x)', forixf)l,

( )0, otherwise.

We will argue below that the results for zv, P, p„and 4g
are in fact exact to all orders in 1/M; only the nonuniver-
sal constants c~, c2 get modified by higher-order correc-
tions. A related analysis can be performed at the critical
coupling g = g, but at finite temperature [10]. For w and
T small (w, T (( g, J), but with u1/T arbitrary, the local
dynamic susceptibility now obeys the scaling form

y"(u), g = g, ) = cisgn(~)~cu~"4~ (14)

where the universal function 4z. is

(1 —4vr2/3x2)' 2, for ~x~ ) 2n. /v 3,
0, otherwise, (15)

and the frequency scale Az = k~T/log ~ (1/T) at low T,
with no nonuniuersa/ prefactor Note again th. e presence
of logarithmic violations of naive scaling; the frequency
scale for the dynamic susceptibility, however, is still set
completely by the absolute temperature to leading-log
accuracy. Our result for 4z is also exact to all orders in

1/M.
1/M expansion We now examine .—corrections to the

above mean field theory at T = 0 in the quantum disor-

(8) Quantum critical region: We now examine the re-
gion near the quantum phase transition at g = g, =—

97r J/16, T = 0. Scaling (see, e.g. , Ref. [10]) pre-
dicts that the spin-glass paramagnetic boundary obeys
T ~6g~' (here bg = g —g,). From the equation for the
phase-boundary at small T above, we deduce zv = 1/2.
The order parameter qEA must vanish as qEA ~bg~

from (11) this yields P = 1. Further the T = 0 spin
gap, 6, in the quantum-disordered phase should vanish
as 4 (6g)' . Using 4 = (A —2Jg)'~2 and (8), we
find, however, that 4 [bg/ln(l/b'g)]i~~. Thus there is a
surprising logarithmic violation of naive scaling —the log-
arithmic divergence is a consequence of the square-root
threshold in the spectral weight (7). For w and 6g small

(u, 6'g (( g, J), but w/bg arbitrary, the entire T = 0, local
dynamic susceptibility obeys a scaling form

dered phase and at the quantum critical point, g = g, .
We will not examine such corrections in the spin-glass
phase where the structure is considerably more compli-
cated due to the expected appearance of replica sym-
metry breaking. Our main result will be that neither
the critical exponents nor the form of the low-frequency
spectral weights are modified by the 1/M corrections.
We begin by absorbing all higher-order corrections into
a self-energy, Z, in the n propagator, which modifies (6)
to

Q(uu„) =g ~„+A —gJ Q(uu„)+Z(i~„)/M . (16)

The function Z(r) is itself a nonlinear functional of Q(r),
obtainable by a 1/N expansion of Zo. I et us consider
first the critical point g = g, and use the M = oo result

Q (i~„) ]~„] at low frequencies. The leading term
in E satisfies Im[Z((u + iO+)] w, Re[2(cu + iO+)]
a~ + a2w, at small w; the suppression at low frequencies
in Im(Z) arises from restriction in the phase space to
three spin-wave decay. On the imaginary frequency axis,
this implies that the leading nonanalytic term in Z{iw~)
is ~u„~s. Now consider the self-consistency (16). The
analytic terms in Z lead to apparently innocuous fre-
quency and mass renormalizations, while the nonanalytic
terms vanish so rapidly that they do not modify the as-
sumed low-frequency form Q (i~„) ~cu„~; our irutial
assumption is therefore self-consistent. Terms higher or-
der in 1/M have even weaker nonanalytic contributions.
Thus there are no modifications to the leading critical
properties, order by order to all orders in 1/M. At finite
temperatures, the gap in the spectrum at g = g, in {14)
and (15) will of course be filled in by thermal excitations;
however, all such contributions appear in the form of sub-
dominant corrections to scaling, i.e., they are suppressed
by additional powers of (cu or T)/(J or g). Similar con-
siderations also apply to the threshold singularity in the
T = 0 spectrum of the spin-Quid phase, where again the
M = oo form survives.

This behavior can be better understood using a classi-
cal statistical mechanics point of view, in which the sys-
tem is viewed as a classical one-dimensional spin system
with a long range interaction Q~ (r); having solved the
model we can then require the self-consistency (4). Our
results above imply that the critical point of the quan-
tum phase transition corresponds to a spin system with

Q(r) 1/r2 for large r {1/r2 is the Fourier transform of
~u~). We may consider a lattice discretization of r, and
also replace the fixed length spins by M-component soft
spins S with a Landau-Ginzburg potential local in time.
Thus we are led to a model with action whose continuum
limit is

S = — dr dr' Q(r —r')S(r) S(r')

+— dr —[O~S(r)] + rS (r) + u(S ) . (17)
2 g
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where g, r, u are constants. This classical spin system,
with Q(7.) 1/w~+, was studied many years ago [17].
These authors found a high-temperature paramagnetic
phase with power-law spin correlations, and a transi-
tion to a low-temperature ordered state if o. & 1, or if
M = 1, o. = 1. In the high-temperature phase they
found (S(~) S(~')) 1/7. ~+ which is also the result
obtained from the leading term in the high-temperature
expansion (expansion in powers of Q). Throughout the
high-temperature phase the spin-spin correlation expo-
nent is unmodified by higher-order terms. As Q(v) and

(S(~) S(~')) have the same asymptotic decay, it is evi-
dent that at least self-consistency in the value of o can
be achieved for any o. The result that o = 1 corre-
sponds to the quantum phase transition can be traced to
the a„ in (6) or (17) which is generically present as the
leading analytic w„dependence. It thus has nothing to
do with the critical point of the one-dimensional system;
the quantum-critical point corresponds to a point in the
high-temperature phase of the classical spin model. With
the choice o. = 1, the other critical properties then follow;
the logarithmic violation of scaling comes in this model
from summing tadpole diagrams in the S interaction.
These arguments are valid for all M including M = 1
(the transverse Ising case).

This paper has presented a soluble model with infinite-
range interactions which displays a quantum phase tran-
sition from a spin-glass to a spin-Quid phase. Further
theoretical work on the extension of these results to finite-
range interactions is clearly required. The current exper-
imental measurements on transverse-Geld Ising magnet
LiHo YI zF4 [7) have not yet examined the quantum-
critical region (w T); such measurements should offer
a useful test of our predictions for the scaling properties
of y" ((u).
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