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Renormalized Perturbation Expansions and Fermi Liquid Theory
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We give a procedure for a renormalized perturbation expansion. It is demonstrated for the Anderson
impurity model, but has wide potential application. To zero order it describes the Landau noninteract-
ing quasiparticles. To first order in the renormalized interaction U it gives the exact thermodynamic re-
sults for low temperatures, and to second order gives the exact T coe%cient for the resistivity. The ap-
proach is not restricted to the Fermi liquid regime and provides a framework for systematic corrections
to Fermi liquid theory.
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For this model the Fourier transform of the retarded
double-time Green's function for the d electron can be ex-
pressed in the form

Gd (eo) =
to —ed —A(to) + t A(to) Z~(to)

(2)

where A(eo) =trgki Vki 6(to —ek) is the parameter which

Perturbation expansions in powers of the interaction
for systems with strong interactions, such as occur in

magnetic impurity systems, heavy fermions, and narrow
band transition metal compounds, have proved to be
largely intractable. Summation of subsets of diagrams in

these expansions have seldom provided the basis for a
correct quantitative theory. Finite order perturbation
theory works well in some special cases at not too large
interaction strengths [I]. Nonperturbative techniques
based on the renormalization group, slave boson mean
field theory, and for magnetic impurity problems exact
solutions have been the main way in which progress has
been made in understanding these systems, though much
remains to be understood. Scaling and renormalization
have been key concepts in this understanding, and form
the basis for Wilson's numerical solution of the Kondo
model [2] for magnetic impurities. The renormalization
group as used by Wilson is based on the idea of progres-
sively eliminating higher energy excitations to arrive at
an effective Hamiltonian for the low energy excitations,
which for the Kondo problem corresponds to Fermi liquid
theory [3]. The idea of renormalization as developed in

quantum field theory leading to a reorganized perturba-
tion theory in terms of the physically observed fully
dressed particles with the observed effective interactions
[4] has not been exploited explicitly for strong correlation
systems. Here we show that it is a very effective tech-
nique for dealing with strongly renormalized systems.
We illustrate the approach by considering the Anderson
model for correlated electrons in magnetic impurities.
The Anderson model [5] for an impurity with a d level

|.'d, and an on-site interaction U, hybridized with a matrix
element Vk to a band of conduction electrons is given by

Z~d, &d, &d, +Und, tnd, t

controls the width of the virtual bound state resonance
at ed in the noninteracting model (U=0), and A(co)

Pgki Vki /(to ek). In the wide band limit with a fiat
weighted density of states d (eo) is independent of to and
A(co) 0. The function Z (to) is the proper self-energy
within a perturbation expansion in powers of the local in-
teraction U. We will need the corresponding irreducible
four-point vertex function I (eo, to'). Our aim is to
reorganize this perturbation expansion into a more con-
venient form to consider the strong correlation regime
(large U, low T, and weak magnetic fields).

Our first step is to write the self-energy in the form

Z (to) =Z (0)+tot'(0)+Z™(to), (3)

which is simply a definition for the remainder self-energy
Z'™(to). Using this expression the Green's function
given in Eq. (2) in the wide band limit can be written in
the form

ed =z [ed+& (0,0)], 6 =zA, Z (to) =zZ" (eo) . (5)

Two zeros are given in the argument of X of (5) to em-
phasize that this is to be evaluated at T=0, and in zero
magnetic field, as well as at co =0. A renormalized four-
point vertex function is defined by I (to, to') =z
&I (to, co'), and a renormalized interaction U by the
value of I (to, to') at ro =to'=0, U =I (0,0).

The next step is to introduce rescaled creation and an-
nihilation operators for the d electron via cd =vzcd
ed =lcd, and to rewrite the Hamiltonian (I) in the
form H =Hqp —H„where Hqp will be referred to as the
quasiparticle Hamiltonian. It can be written as Hqp
+ Hqp wher e Hqp describes noninteracting particles and
is given by

Gd (co) =
to —ed + tA —Z (M)

where z, the wave function renormalization factor, is
given by z = I/[I —Z'(0)], the prime denotes a derivative
with respect to m, and m =0 corresponds to the Fermi lev-
el. We assume the general theorem of Luttinger [6] that
ImZ(0) vanishes so that z is real. The "renormalized"
quantities, which are denoted by a tilde, are defined by
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Hqp =+Ed, czcd, aCd, a+ Q( Vkcd, ~ck, cr+ Vk ck, ~cd, a )
cr k, a

+g Ek ~C k, aC k (x, (6)
k, cr

and H„p is the interaction term, H„p =Und tnd ~. The
- (I) . - (I)

Hamiltonian H, - describes the counterterms and takes the
form

Hc klZrd cd +~2iid ind 1 ' (7)

where ki and k2 are given by

~, =zz(0, 0), X, = [r, , (O, O) —Ul. (8)

y g(niU& g —g pi&&U&
n=O n=0 n=0

The coefficients ki", k2", and z " are determined by the
requirement that conditions (9) and (10) are satisfied to
each order in the expansion. The perturbation expansion
is about the free quasiparticle Hamiltonian given in Eq.
(6) so that the noninteracting propagator has renormal-
ized parameters ed, h, .

For most field theoretic models the counterterms are
necessary to cancel the divergences which result where
there is no high energy cutoff on the integrals. The con-

These equations are simply a rewriting of the original
Hamiltonian (1). We note that by construction the re-
normalized self-energy Z (ro) is such that

z.(o,o) =o, z.'(o, o) =o,
so that Z (rp) =O(rp ) for small cp, on the assumption
that it is analytic at co =0. As I (0,0) =0 we also have

I=..(o, o) =U(i —a.,.) . (io)
We now identify the Hamiltonian Hqp with the nonin-
teracting quasi articles of the Landau Fermi liquid
theory, and H&'„as the quasiparticle interaction term.
The form of H„p follows from our general prescription
which corresponds to that used in many field theoretic
treatments of renormalization [4]. We note that H„z in

this case is identical in form to the effective Hamiltonian
near the strong coupling fixed point for the Kondo model
as obtained by Wilson [2] in his numerical renormaliza-
tion group calculations. The Kondo model corresponds to
the regime ed (0 and U))zh. . We propose to show that
H„p is an effective Hamiltonian about the Fermi liquid
fixed point for all parameter regimes of the Anderson
model.

To develop a theory appropriate for the low tempera-
ture regime we follow the renormalization procedure as
used in quantum field theory so that we can make a per-
turbation expansion in terms of our fully dressed quasi-
particles (see, for instance, Ref. [4]). We take our renor-
malized parameters ed, 6, and U as known and reorgan-
ize the perturbation expansion in powers of the renormal-
ized coupling U. The full interaction Hamiltonian is

Hqp H . The terms ki, k~, and z are formally ex-
- (I)

pressed as a series in powers of U,

|)&.(ro) ' |iz.(co)+
pico p Qp

= —
pd, (0)I i, i(0,0) (13)

and

tlZ (cp)

Bh

6Z (rp)

BM
= —

pd, (0)l 1 i(0,0),
(i 4)

where p is the chemical potential and h =gpqH, and
pd(0) is the d density of states at the Fermi level. It can
be shown that the two equations, (13) and (14), are valid
in the renormalized theory (all quantities with a tilde).
From Eq. (9) the co derivative of Z(cd) vanishes at ro =0
so that the renormalized equations reduce to

f)z (rd)

Bh

6Z (co)

6p
= —

pd .(0)I-, , (o,o),
(Is)

where pd (0) =pd (0)/z is the quasiparticle density of
states at the Fermi level.

As the effects of the quasiparticle interactions go to
zero as T 0 due to the cancellation with the counter-
term giving Z(0, 0) =0 and Z'(0, 0) =0, the specific heat
coefficient of the impurity y; p is due to the no@interact-
ing quasiparticles and so y; ~=2m kqpd(0)/3, as in the
usual Landau theory. In finite magnetic field the quasi-
particle interaction gives an energy shift which is not can-
celed by the counterterm and the susceptibility is en-
hanced over the noninteracting quasiparticle value. The

dition that this procedure gives finite predictions in terms
of renormalized parameters when the cutoff is removed
from the regularized integrals is the condition that the
field theory is renormalizable. In condensed matter sys-
tems there is some form of high energy cutoff so this type
of reorganization of the perturbation series is not neces-
sary. However, for strong correlation problems, such as
magnetic impurity and heavy fermion systems where the
quasiparticles are strongly renormalized, it is a very suit-
able procedure to adopt for low temperature calculation .
We propose to show that it makes direct contact with
both the Landau phenomenological and the microscopic
f'ormulations of Fermi liquid theory.

The Friedel sum rule [7] gives the occupation of the d
level, nd, at T=O and has the form

ed ~+X~(O, H)
nd =———tan

2 7t
(12)

in terms of the self-energy Z(cp) (in a finite magnetic
field H) for the expansion in powers of U for the "bare"
Hamiltonian (I). It takes the same form for the renor-
malized expansion with all the parameters in (12) carry-
ing a tilde (this follows from the definitions and the fact
that the common factor of z in the argument of the tan
cancels). The quasiparticle interaction plays no role as
T 0 and H 0 as Z(0, 0) =0 and so nd corresponds
to the noninteracting quasiparticle number.

There are two Ward identities [1,8] in the unrenormal-
ized theory,
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spin susceptibility is given by

(gpa) ' ez
Limp

= pd (o)

(i7)

(b)

FIG. i. The (a) first order and (b) second order diagrams
within a perturbation expansion in powers of the renormalized
interaction U for the impurity Anderson model.

pd(0) [I +Upd(0)](gag) '
2

(i 6)

and the charge susceptibility by

g, . ; z
= 2py (0) ( I + BZ/6p ) =2P, (0) [ i —VP, (0)] .

The well known Fermi liquid relation [1] relating y;

~, and g, ; ~ follows on elimination of U and pd(0).
In the Kondo regime (U))rcpt, ed (0, g, , ;mt, 0), y;

can be written in terms of the Kondo temperature T~,
y;„~=n kg/6T~, which defines our Kondo temperature.
In this limit nd l and hence from the renormalized
Friedel sum rule Fq =0 and pd(0) = I/xh. This gives us

all the renormalized parameters in the strong correlation
regime in terms of Tz, U=~4=4kgTI(. . . It is possible to
calculate the renormalized parameters perturbatively in

powers of the ratio U/zch for the symmetric model using
the perturbation theory of Yosida and Yamada [I]. In

the renormalized theory we see from (17) that the physi-
cal requirement g, ; z~ 0 implies that the renormalized
perturbation expansion is always in the weak coupling re-

gime corresponding to U ~ nA.
The thermodynamic results can be obtained from the

lowest order term in the renormalized perturbation for X„
the tadpole diagram shown in Fig. 1(a), which gives

X '
(ru, H) =U[n) (O, H) n) (0,0—)]. (is)

There is no wave function renormalization to this order so
=0 and to this order I

'
(cu, rd') =U, X2' =0, and

=Un) (0,0). The complete cancellation by the
counterterm only occurs for H =0 and T=O. Calcula-
tion of the spin susceptibility from (18) gives (16), and
similarly the charge susceptibility gives (17). The renor-
malized Ward identities in Eq. (15) show that higher or-
der terms in U cancel so that the first order calculations
of g;~], and g,. ;mp are exact.

Exact results for the impurity Green's function (2) to
order co follow from the calculation of the second order
diagram I'or Z shown in Fig. 1(b). There is no second or-
der counterterm contribution to this diagram from X2 as

=0. There is a contribution to z which is required to
eliminate the contribution from the linear term in co to
this order and is given by

z =(1t —12)/47' 6 (i 9)
Calculation of this diagram to order m gives

2 2

Imr (~o, 0)=,+0(co').
2a(~Z) '

The spectral density of the noninteracting renormalized d
Green's function describes the Kondo resonance and the
co terms in Z (ro, 0) give the low frequency corrections to
this picture.

There is a temperature-dependent contribution to
2 (0, T) to first order of the form (18) with T replaced by
H. For the particle-hole symmetric model, and more gen-
erally in the Kondo regime nd 1, this vanishes as

nd (O, T) =nd (0,0) =
I and the leading order tempera-

ture dependence (T ) arises from the second order dia-
gram 1(b). This result together with (20) can be used to
calculate the T contribution to the impurity conductivity
a; „(T) and gives

r

2
2

a; „(T)=a' I+ [1+2(R—I)']+O(T )
kaT 2 4

(2i)
where R =

I +U/zA is the Wilson ratio or "g/y" ratio.
This result is identical to the exact result derived by
Nozieres [3] in the Kondo regime, xh 4k' T~, R 2,
and also to the more general results of Yosida and Yama-
da [I]. Hence we see that all the Fermi liquid relations
can be obtained within the renormalized expansion up to
second order in U.

We see that the effects of the counterterms play no

really significant role in the Fermi liquid regime. The
same results can be obtained in this regime by neglecting
H, and working so.lely with H„~ [9] which has to be nor-
mal ordered and expressed in terms of particle and hole
operators. The quasiparticle interaction only comes into

play at finite temperatures and finite magnetic field when

these excitations are excited. The molecular field approx-
imation on H„z then corresponds to the Fermi liquid
theory. The calculations performed in this way relate
closely to the more intuitive phenomenological Fermi
liquid approach to Landau [10], and the fact that asymp-
totically exact calculations are possible as T- 0, H 0,
can be seen to be due to the low density of excitations in

this limit (6n 0). The renormalized perturbation
theory with the counterterms, however, goes beyond the
Fermi liquid regime. In this perturbation theory nothing
has been omitted so that in principle calculations can be
performed at high temperatures and high fields, allowing
the bare particles to be seen. Relatively low order calcu-
lations can provide some estimate of the bare parameters
in terms of the renormalized ones by inverting (5) and
(I~),

e~ = (Fd —Xl )/z, 6 =6/z, U = (U —Xz)/z, (22)
where X], X2, and z are implicit functions of ed, h„and U.
Alternatively it should be possible to estimate the renor-
malized parameters in terms of the bare ones by varia-
tional methods.

As the Anderson model is integrable and exact solu-
tions exist for the thermodynamic behavior it is possible
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to deduce the renormalized parameters exactly over the
full parameter regime. For the symmetric Anderson
model the parameters U and h, have been calculated using
the exact Bethe ansatz results [11] from Eqs. (16) and
(17) and these are shown in Fig. 2. The asymptotic re-
sults at strong coupling correspond to U=zh, =4kgTg
with T~ given by

r

k T =U —n'U/8b, + mb, /2U

2U

The approach has been extended to other impurity mod-
els such as the IV-fold degenerate Anderson model and
the n-channel Kondo model with n =2S. The quasiparti-
cle Hamiltonian for the W-fold degenerate Anderson
model is of the same form as (6) and specified by the pa-
rameters t.I, h„and U. I n the Kondo regime using

gc, imp =0 we find

(23)

N sin (tr/N)
tr(N —

1 )
(24)

lV sin(tr/N)cos(tr/N)
&f 8 K

(N I )

and U =kttTtr [N//(N —1)],with the Kondo temperature
defined by 2';mz=(gptt) j (j + I )/3k&Ttt with 2J+ I =N.
The quasiparticle density of states is a Lorenztian reso-
nance at ey of width 6 U=0. The narrowing and shifting
of the resonance with increase of N from N=2 to the
large lV limit is apparent from (24). In the n-channel
model with n =2S the quasiparticle Hamiltonian contains
a renormalized Hund's rule coupling JH in addition to a
renormalized on-site interaction U and a hybridized reso-
nance width 6 which can again be expressed in terms of
the Kondo temperature T~ in the localized regime.

To give insight into the renorrnalized perturbation
theory (RPT) we have demonstrated its application here
to magnetic impurity models. Clearly there are some
simplifying features for impurity problems. One is that
the renormalized four-point vertex function 1 is a func-

K/

1.0

1

1

4"4+)

\

0.5

0.0
0.0 1.0 2.0

FIG. 2. A plot of the renorrnalized parameters U and h, for
the symmetric Anderson model in terms of the bare parameters
U and h, . In the comparison of these parameters with 4kgTg
for U)) tran the value for Ttt is given by (23).

4010

tion of frequency only and so F(0,0) is entirely on-site
and takes the form (10). This has the consequence that
the quasiparticle Hamiltonian has the same form as the
bare Hamiltonian. This will not be the case for the
periodic Anderson model for heavy fermions where
F(0,0) will in general be k dependent so there will then
be off-site terms so that the quasiparticle Hamiltonian
will differ from the bare model. The RPT approach
should be an effective technique for tackling heavy fer-
mion problems as the renormalizations for these systems
are particularly lar e. For these systems the quasiparti-
cle Hamiltonian Hq„describes electrons in renormalized
bands. In the limit of large dimensionality d ~ the
self-energy is independent of k (see Ref. [12]) and, as in

the impurity case, it should be possible to use the local
form (10) for the quasiparticle interaction term.

One of the major assumptions in the reorganization of
the perturbation theory leading to (6) is that the self-
energy Z(eo) is analytic as a function of co at T=0 so
that the derivative Z'(0, 0) is finite. Clearly when this is

not so and Fermi liquid theory breaks down, as in the
case of superconductivity or the one-dimensional Lut-
tinger liquid [13], the manipulations leading to (6) are
not possible. If a Fermi liquid theory is assumed and cal-
culations carried out, inconsistencies should arise, sig-
naled by singular quasiparticle scattering. In such cases
it may be possible to reorganize the series as a renormal-
ized perturbation theory about the appropriate non-
Fermi-liquid-theory fixed point.
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