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Magnetoresistance in 2D Electrons on Liquid Helium: Many-Electron
versus Single-Electron Kinetics
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The magnetoresistance p „of two-dimensional electrons, density n, on liquid helium was measured up
to the quantum limit, near 1 K where the scattering is due to He vapor atoms. Temperature- and
density-dependent positive magnetoresistance was observed. Many-electron theory is presented that "re-
stores" the Drude formalism for Amor

«kT«e2n't /so [air =(e2n3t2/2eom)'t is the plasma frequency]
for classically strong magnetic fields, and shows large magnetoresistance in higher fields, in agreement
with the data. The crossover to single-electron kinetics at the highest fields is discussed.

PACS numbers: 73.20.Dx, 67.90.+z, 73.50.3t

Electron-electron interactions produce many interest-
ing phenomena in two-dimensional electron systems
(2DES) [1], such as the classical electron solid on liquid
helium [2], the fractional quantum Hall effect [3], and
the proposed magnetically induced Wigner solid in semi-
conductors [4]. However, there should also be many-
electron dynamic eAects which are not immediately relat-
ed to long-range order. This Letter discusses the
infiuence of these effects on the magnetoresistivity p, (8)
of a nondegenerate 2D electron gas (2DEG), density n,
on liquid helium in a perpendicular magnetic field B. For
instance, why should the single-electron approximation
apply at all, since the electron-electron energy
e n'//~)) kT, the thermal energy, at low temperatures
T in this system? Nevertheless the classical Drude model
based on elastic (or quasielastic) scattering of indepen-
dent electrons has been demonstrated to be in good agree-
ment with the experimental data for B =0. In a field it
predicts a resistivity p (8) =po= 1/nepo where po is the
zero-field mobility but is commonly recognized to fail for

classically strong magnetic fields, poB & l, where the
density of states is concentrated into a set of discrete
Landau levels whose spacing exceeds their width. In this
case large magnetoresistance would be expected to arise
for 8 & 1/po. The mobility po is strongly temperature
dependent, increasing from 2 m /Vs at 2 K (where elec-
trons are scattered by He atoms) to over 10 m /V s

below 0.5 K where ripplon scattering dominates. Above
1.5 K positive magnetoresistance for 8 & I/po has indeed
been observed experimentally and is described [5-8] by a
single-particle self-consistent Born approximation
(SCBA). However, for lower temperatures (and higher
mobilities) there is no large magnetoresistance for
8—1/po, and we have previously shown that many-
electron eAects are important in quantizing magnetic
fields in electron-ripplon scattering below 1 K [9-11].
We now present new measurements and theory for
p„(8) near 1 K, in fields up to the quantum limit
6 /ckoT)) 1, where the scattering is dominated by He
vapor atoms whose density increases exponentially with T

and which act as short-range scattering centers, ideal for
comparison with theoretical models. The data indicate
the many-electron character of the kinetics and the
theory resolves the controversy about the applicability of
the Drude model to many-electron systems.

We measured the magnetoresistance of a 2DEG on
superfluid helium using the Sommer-Tanner technique
[12] with coplanar electrodes (see Fig. 1) in a rectangular
geometry 120 pm below the electron sheet. An ac volt-
age Vo at a frequency f (=to/2tr) between 0.27 and 5
kHz was applied to electrode 2 and the ac current I to
electrode 0 was measured. For a perfectly conducting
electron sheet at B =0 the phase of the capacitively cou-
pled current I is tr/2 with respect to Vo. The phase shift
p(8) away from tr/2 was measured as a function of 8 for
a range of electron densities, for temperatures 0.9 & T
& 1.3 K. The data cover a wide range of poB values and
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FIG. 1. The normalized resistivity p (B) vs B for n
=0.6X10' m, T=1.003 K. The lines show the theory for
independent electrons, p,* (line a~), the classical many-electron
theory p*„Eq. (5) (line h i), the quantum many-electron
theory p*~, Eq. (6) (line c~), and the total resistivity, p&* (line
d~). The onset field Bp and the quantum limit, hat, /kT=1 at
Bq, are marked. (Inset: electrode geometry. )
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FIG. 2. The density dependence of p*(8) vs 8 for n =0.6
(7, data set 1) and 2. 1 (CI, data set 2) X 10'2 m at T=1.003
K. The a and d lines show the theory for independent electrons,
p,*, and the total resistivity, p&, from Eq. (7), respectively, for
data sets l and 2.
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FIG. 3. The temperature dependence of p*(8) vs 8 for
n=2. 1X10' m at 1.003 K (&, data set 2) and at 1.215 K
(0, data set 3). The a and d lines show the theory for indepen-
dent electrons, p,*, and the total resistivity, p&*, from Eq. (7), re-
spectively, for data sets 2 and 3.

extend into the quantum limit h. ro, /kT&)1. The elec-
trons were produced by a glow discharge and held in

place by dc voltages on the electrodes, a surrounding
guard ring and a top plate 1.93 mm above the helium sur-
face. The electron density was determined from the
linear Hall voltage VH ~8/ne as measured between elec-
trodes 8 and C and calibrated using the transition to the
2D electron solid phase at T =0.216 & 10 n ' K.

[1,13,14].
The phase shift p(8) in a magnetic field for rectangu-

lar electrodes is given by [15,16]

(|(8)=Krop [1+(ap y/p ) 1

= ttop* [1+(apoB/p* ) '],
where K and a (=0.225 in this case) depend on the elec-
trode geometry. The second expression, for the normal-
ized resistivity p* =p, (8)/po, is obtained by using the
Hall resistance p„r =8/ne as confirmed experimentally
[5,7] in agreement with theoretical arguments [5,17].
Hence we can obtain p*(B,T) from the measured p(B)
In very low fields, where p* = 1, the initial slope of
p(8)/po is proportional to (poB) and directly gives the
zero-field mobility. Typical values of po were 26, 34, 52,
92, and 140 m /Vs for T=1.252, 1.215, 1.082, 1.003,
and 0.924 K, respectively, in agreement with other exper-
iments [18] and single-electron calculations in zero field
[19].

Positive magnetoresistance was observed for all densi-
ties and temperatures investigated, cf. Figs. 1 to 3. The
main features of the data are the same. In low fields the
normalized resistivity p* is almost independent of field,
though it increases slowly and quadratically with field.
At higher fields the resistivity increases rapidly and the
value of p* at a given field increases with decreasing den-
sity (Fig. 2) and temperature (Fig. 3). The data sets

shown were taken at 956 Hz; p* was independent of fre-
quency below 5 kHz. At much higher fields, =60 T at 1

kHz, an edge magnetoplasmon resonance should be ob-
served [20].

A remarkable feature of the observed magnetoresis-
tance is that it is relatively small for classically strong
magnetic fields: p* & 1, 1 even for B =0.4 T where
poB) 10 and hence the Landau-level spacing is more
than an order of magnitude larger than the level width as
given by 6/ro (ro is the momentum relaxation time for
8=0). In the conventional single-electron theory based
on the SCBA the width of the levels 6/rg is due to elec-
tron collisions with He vapor atoms and, since the densi-
ty of states increases due to the "squeezing" of the energy
spectrum into Landau levels, rz ' =(2ppB/tr) rp for
poB»1 and increases sharply with 8 [6,17]. In the clas-
sical limit, hto, /kT « 1, this leads to p,

* = (poB) 't

while in the quantum limit, Aro, /kT)& I, p,
* = (poB) '

x (pro, /kT). The full theoretical expression for p,
* using

the SCBA for a nondegenerate 2DES has been given by
van der Heijden et al. [6] and is shown (line a) in the
figures. In each case p,* lies above the data and shows a
stronger field dependence. It is this striking observation
which indicates the importance of many-electron eftects
and is the subject of this paper. Moreover, p* displays a
density dependence that also indicates the influence of
many-electron eA'ects.

The onset of many-electron magnetoresistance and the
agreement between the single-electron theory and experi-
ment for 8 =0 can be understood since the result of the
strong electron-electron coupling for e n ' /eo&) kT is
that an electron is driven by a fluctuational (and fluctuat-
ing) electric field E from the other electrons. If this field
is weak so that the change of kinetic energy over a
thermal wavelength 6s=eEXT «kT [XT=6/(2mkT) '

E =(E )' ], the electron motion is semiclassical [21]. A
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quasielastic collision with a short-range scatterer is then
not influenced by many-electron effects (provided E does
not change over the collision time h/kT) and the single-
particle approximation holds for 8 =0.

For poB»1 the Auctuational field E can dramatically
change the magnetotransport, compared to the single-
electron theory, as the energy spectrum of an electron in
crossed B and E fields is continuous (not discrete as for

E =0), and an electron can be scattered quasielastically
by a short-range scatterer (a He atom). Since only one
electron is immediately involved in a collision (neglecting
momentum transfers of' order h, n' ), the expression for
magnetoconductivity to the lowest order in the coupling is
the same as the Drude theory [22], with the only (but im-
portant) difference that the electron-electron interaction
influences the motion of an electron in the course of a col-
lision and hence

p per (~T/~) (ro/r B) r B
' = X'h—'Zq 'I I, I 'g(q),

q

(2)

p*, =1+(5/96)(hto, /kT) (3)

The E-dependent correction [—li e E /48m(kT) l to
~p ' is additive, and therefore does not enter p* in this
regime.

A different situation arises for g)) 1 (still @to,/kT«1)
when, before the many-electron field drives it away, an
electron performs several rotations about a scatterer, in-
creasing the probability of scattering. The correlator
j(q) was evaluated by the steepest descent method, with
saddle points at 2trs/cu„—i h/2k T. The many-electron

&(q) =J dt g(q, t); &(q, t) =(exp[iq r (~t)]e px[
—iq

Here,
~ V~~ is the mean squared Fourier component of

the random quasistationary scattering field, r~ is the posi-
tion vector of the jth electron, and X is a characteristic
wavelength of an electron; A. = A. T for 6 co, ((k T and
l =I = (h/eB) ', the magnetic length, for &co, ))kT

The electron-electron coupling determines the kinetics
of an individual electron and thus the value of the corre-
lator g(q, t). In other words, Eq. (2) gives the magneto-
conductivity due to the momentum transfer from the
"electron community" iia the scattering of individual
electrons. The scattering rate for a nondegenerate 2DES
has been given previously in the extreme quantum limit
Aced, ))kT [23,24]. Here we present a theory of magne-
toresistance for arbitrary magnetic fields.

In the single-electron approximation at 8 =0, g(q)
=(2trm/kTq ) 't exp( —h q /8mkT), whereas for finite
8 the integral in Eq. (2) diverges as an electron moves
along a closed loop in classical terms. This is no longer
true if the electron is also driven by an electric field from
the other electrons. The value of g(q) and the physics of
the scattering depend on the value of the parameter
g=tu„(2mkT) ' /eE which gives the ratio of the cyclo-
tron radius R, =(2kT/mco, ) 't to the shift of the orbit in

the crossed E and B fields over the time co, ', or in quan-
turn terms, the ratio of Aco, to the uncertainty eEXT in

the kinetic energy of an electron. For ti «1 (small fields)
the Landau levels are smeared out and the scattering is
basically as for 8 =0. The evaluation of g(q) in this lim-
it requires the solution of the equations of motion for
small times —6/k T with the magnetic field and the
electron-electron interaction as perturbations. This leads
to a small quadratic magnetoresistance

field causes drift of the cyclotron orbit by (E/8)t, with
t =2trs/tu„and therefore

(( )
2trm

' I/2 —6 q-P 8kT

exp 2E q

The values of the integer s which contribute to the sum
are limited to ~s( = t;=@co,/eER, =rt(he@, /2kT). The
magnetoresistance increases rapidly for 8 & 80 (/= I for
8=8o). The onset field Bo is the field above which the
electron drift over the time m, ' is less than the thermal
wavelength XT. If the distribution of the many-electron
field is Gaussian and the electrons are scattered by vapor
atoms then Eqs. (2)-(4) give

[I+4tr s (Bo/8) ] (s)

which exactly coincides with Eq. (5) in the range 8» Bo,
he@„/kT« 1, where both the above classical and quantum
theories apply.

We now compare this theory with three data sets [set
g ——0 6x10' cm, T=1.003 K; set 2: n =2.1X10'

The onset field 80 depends on the fluctuational electric
field which can be estimated by assuming short-range or-
der in the electron system (which seems reasonable for
e 2n 't2/eo)) kT) by equating kT to the energy e E /mtot,
of electron vibrations in the field of other electrons
at a characteristic 2D plasma frequency co =(e n /

3/2 I/22eom) 't [23]; one arrives at E = 0.84(kTn /eo) ' [24],
tt-co„/tu„and 80=1.66X 10 n T'

The expression for ((q) that follows from quantum
theory is of the form g(q) = 28q '(E '):-&exp( —l
xq /2) where =v [and:- in Eq. (6) below] allows for the
filling of the excited Landau levels and l =(6/eB) ' is

the magnetic length. In the limit of a quantizing field,
h o„/ckT)) I, :-z == =1. The reduced resistivity is then
given by
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1 1 pi+
pr pm pS

(7)

which is derived from the Einstein diffusion equation in

which the scattering rate is proportional to hco, /I, where
I is the energy uncertainty of each Landau level. Equa-
tion (7) incorporates the self-consistent nature of the
SCBA. The normalized total resistivity p,

* is plotted as
line d t and sho~s good agreement with the measure-
ments, particularly since there are no adjustable parame-
ters in these calculations. Figure 2 demonstrates the den-
sity dependence of p at a fixed temperature where the
SCBA result is independent of density while p,

* increases
as the density decreases as shown by lines d~ and d2.
Figure 3 demonstrates the temperature dependence of p*
at a fixed density compared to the SCBA results (lines az
and a3) and p,

* (lines d
~

and d2).
At the highest fields the SCBA, and collision broaden-

ing of the Landau levels, will dominate the magnetoresis-
tance. The crossover from many-electron kinetics to the
independent electron approach of the SCBA occurs with
increasing 8 and T since Eq. (2) only holds if the dura-
tion of a collision r, «r~, the relaxation time. For clas-
sically strong fields r, is equal to li/kT for rI((1 and
X BT/E for il)&1 and g& I, respectively, while for quan-
tizing fields r, =lB/E cc 8' . But the scattering rate
rz ' increases rapidly at high 8 and T and the electron
kinetics and scattering become essentially single electron
in nature. At the crossover i g —r —(r g )scaA [note
th «a)src8BA (&Br.) '"] «p'0(+, rriq) =pscBA
terms of the zero-field mobility po, the SCBA will apply
in the quantum limit for fields B~ 5x10 '

po T' n

T. In the experiments of Adams and Paalanen [8] and
van der Heijden et al. [61 this condition was satisfied for
B&1T.

In conclusion, we have observed and explained the
many-electron character of the magnetoresistance of a

cm 2, T =1.003 K; set 3: n =2.1x10' cm, T=1.215
K] in Figs. I, 2, and 3 where the normalized resistivity is

plotted versus 8 At. low fields (though poB & I for all
the data shown) the magnetoresistance is in qualitative
and quantitative contradiction with the SCBA theory
(lines a~, a2, and a3, where the subscripts refer to the cor-
responding data sets). Figure 1 shows the calculations
for the many-electron theories for data set 1. The low
field classical theory, Eq. (3) (line b~), predicts a small
magnetoresistance for g «1 which corresponds to B«0.2
T. The onset field for magnetoresistance 80 from the
classical theory, Eq. (S), is 0.44 T for data set 1 (Bo
=0.69 and 0.76 T for data sets 2 and 3). But quantum
effects are already important in this region as hen, =kT
at B~ =0.75 T at 1 K. For B & 2 T we can use the quan-
tum magnetoresistance p*q, Eq. (6), shown by line ci.
However, for p* & 5, the results of the many-electron
theory and of the single-electron SCBA differ by less
than a factor of 2 and the combined total resistivity p& is
then calculated from the expression

2DEG in classically strong and in quantizing magnetic
fields. The crossover from many- to single-electron kinet-
ics has been observed with increasing magnetic fields.
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