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We discuss the process by which energy, initially evenly distributed in a nonlinear lattice, can
localize itself into large amplitude excitations. We show that the standard modulational instabil-
ity mechanism, which can initiate the process by the formation of small amplitude breathers, is
completed efhciently, in the presence of discreteness, by energy exchange mechanisms between the
nonlinear excitations which favor systematically the growth of the larger excitations. The pro-
cess is, however, self-regulated because the large amplitude excitations are finally trapped by the
Peierls-Nabarro potential.

PACS numbers: 63,10.+a, 03.40.Kf, 46.10.+z

Many physical phenomena involve some localization of
energy in space. The formation of vortices in hydrody-
namics, self-focusing in optics or plasmas, the formation
of dislocations in solids under stress, and self-trapping
of energy in proteins are well known examples. Follow-
ing the original work by Anderson [1] disorder-induced
localization has been widely studied, but, more recently,
attention was turned to the possibility to localize energy
in a homogeneous system due to nonlinear efFects. The
process can become dramatic when it leads to collapse
in a plasma [2]. In this Letter we are interested in the
process by which energy evenly distributed in such a sys-
tem can concentrate itself spontaneously into spatially
localized nonlinear excitations. In some cases this evolu-
tion can lead to the formation of topological solitonlike
excitations such as dislocations or ferroelectric or ferro-
magnetic domain walls. However, since there is an energy
threshold for the creation of topological solitons, the first
step of the evolution is the formation of breathers or en-
velope modes; we shall therefore focus our attention on
such modes.

Nonlinear energy localization in continuous media has
been extensively investigated since Benjamin and Feir [3]
discovered the modulational instability of Stokes waves
in fluids, but very little has been done in lattices although
it would be of wide interest for solids or macromolecules.
We want to point out here that, in a discrete lattice, non-
linear energy localization is very different from its coun-
terpart in a continuum medium. In particular, we show
that, besides the familiar mechanism of modulational in-
stability, which is itself strongly modified by discreteness
effects, there is an additional channel for energy concen-
tration, which is specific to lattices, but is not sensitive
to the details of the nonlinear lattice model which is con-
sidered. Therefore it appears as a very general process
leading to localization of energy in a lattice.

The first step toward the creation of localized exci-
tations can be achieved through modulational instabil-
ity, which exists in a lattice as well as in a continuum
medium, although discreteness can drastically change the
conditions for instability [4] (e.g. , at small wave numbers

a nonlinear carrier wave is unstable to all possible mod-
ulations of its amplitude as soon as the wave amplitude
exceeds a certain threshold). However, the maximum en-

ergy of the breathers created by modulational instability
is bounded because each breather collects the energy of
the initial wave over the modulation length A so that
its energy cannot exceed E~~„= A e where e is the en-

ergy density of the plane wave. Consequently, although
modulational instability can lead to a strong increase in
energy density in some parts of the system, it cannot cre-
ate breathers with a total energy exceeding E . For a
given initial energy density, one can, however, go beyond
this limit if one excitation can collect the energy of sev-
eral breathers created by modulational instability. Such
a mechanism is not observed in a continuum medium be-
cause there the breathers generated by modulational in-

stability are well approximated by solitons of the nonlin-
ear Schrodinger (NLS) equation which can pass through
each other without exchanging energy. On the contrary,
when discreteness effects are present, the energy of each
excitation is not conserved in collisions, and, the impor-
tant point is that the exchange tends to favor the groujth

of the larger excitation. In order to analyze the growth
of the breathers in a lattice, we must therefore examine
three of their properties: (i) their stability, (ii) their abil-
ity to move in the lattice, and (iii) the nature of their
interactions.

In order to discuss these points quantitatively, let us,
in a first step, examine a specific model. We consider a
chain of harmonically coupled particles situated at posi-
tions u„and submitted to the substrate potential

where su& is a parameter which measures the amplitude of
the substrate potential, and therefore controls discrete-
ness. We will be interested in motions inside the potential
well (u ( 1). This potential can be viewed as a medium
amplitude expansion of any asymmetric potential around
a minimum. It can for instance represent the expansion
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of a Morse potential in a nonlinear model for DNA de-
naturation ~5~~ ~ or the expression around a minimum f
the well known P potential [6]. The Hamiltonian of the
model is

1 0

0.8—

-12 1 2—u„+ —(u„—u„1) + v(u„) 0.6—

The existence and stability of breathers in nonlinear
Klein-Gordon models has been the subject of many in-
vestigations [6] and is not yet completely understood.

owever, we have shown that, provided that discrete-
ness is strong enough, extremely stable large amplitude
breathers can exist in such a model [5] Th bey can be
obtained with the Green's function method introduced
by Sievers and Takeno [7] for intrinsic localized modes in

lattices with anharmonic coupling. The role of discrete-
ness to stabilize the breathers can be understood if one
starts from the "anti-integrable" limit where the on-site
nonlinear oscillators are decoupled and then turns on a
coupling which remains weak with respect to the on-site
potential [8]. Thus discrete breathers are sufficiently sta-
ble to have a long lifetime which gives them sufficient
time to interact, provided that they can move in the lat-
tice. This point is not as trivial as it might seem if one

as in mind the picture of solitonlike excitations in a con-
tinuum medium because discreteness breaks the transla-
tional invariance. This effect is well known for topological
solitonlike excitations and has been extensively investi-
gated in the context of dislocation theory [9]. In a lattice
a kink cannot move freely. The minimum energy bar-
rier which must be overcome to translate the kink by
one lattice period is known as the Peierls-Nabarro (PN)
barrier, EpN. It can be calculated by evaluating the en-

ergy of a static kink as a function of its position in the
latti Fa ice. For the various models which have been investi-
gated, two extremal values are generally obtained when
the kink is exactly situated on a lattice site (centered
solution) or when it is in the middle between two sites
(noncentered solution). For a discrete breather very lit-
tle is known, although the PN barrier has been shown
to exist [6]. One of the difficulties is that the breather
is a two-parameter solution. While for a kink, the PN
barrier depends only on discreteness, i.e. , on the model
parameters, for a breather it depends also upon its am-
plitude (or frequency). This amplitude dependence is
crucial for our analysis because we are interested in the
growth of breathers. As they increase in amplitude, the
PN barrier that they feel changes. An accurate value of
the PN barrier for a breather can be obtained by calculat-
ing the centered and noncentered breather solutions with
the lattice Green's functions method [5]. The calculation
requires some care because the noncentered solution cor-
responds to the maximum of the PN barrier. Therefore

the
it is unstable and the breather tends to converg t donverge owar

e centered solution which has a lower energy. The non-
centered solution can, however, be obtained by request-

3936

0.2—

0.0

0 5 io 15 20
n

I'IG. 1. Profiles of the centered and noncentered breather
solutions at the time corresponding to the maximum ampli-
tude, for a breather frequency ~z = 0.873m& with ~ = 1

up = A+ Bcos((ubt), uy1 = C+ D cos(u)bt),

and ul = 0 for ltl ) &

where ub is the breather frequency and A B C D pa-
rameters to be determined. Inserting this ansatz into the
equations of motion, assuming that the excitation decays
sufficiently rapidly, i.e. , A )) C and that adjacent par-

breather amplitude and its frequency

24+Az.

Althou h it ig
'

s only approxj. mate, this equation gives the
general trend, and shows in particular that, as the ampli-
tude increases, the breather frequency decreases as one
might expect. From this result the energy of the cen-
tered breather can be derived. The noncentered case can
be treated similarly by considering 4 sites and assuming
up = u ], uy = u g. The energies of the centered and
noncentered breathers versus the breather frequency for
a model with u&

——10 are plotted in Fig. 2 which shows

ing that the two particles which are around the breather
center have the same motion. A typical aspect of the two
solutions is shown in Fig. l.

For a very discrete breather, an approximate expres-
sion can also be obtained by assuming that only a few
lattice points enter in the solution. For instance, for a
breather centered on site n = 0, we look for a solution
localized on only three sites by assuming
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FIG. 2. Variation versus frequency of the energies of the
noncentered (full line and crosses) and centered (dashed line
and dots) breathers for cu„= 10. The lines are obtained with
the anaatze using only 3 or 4 sites, and the points are derived
from the exact Green function calculation.

that, while at high frequency, i.e. , low amplitude, the two
solutions have approximately the same energy, when the
frequency decreases, i.e. , the amplitude increases, the dif-
ference in energy between the two cases increases dras-
tically. Therefore we can expect that small amplitude
breathers can move rather freely in the lattice, while the
large one will feel the discreteness strongly. This is veri-
Ged by numerical simulations of the lattice equations.

To study the interactions between the breathers, we
must rely on numerical simulations since, in the dis-
crete model, no exact solution is available. In the en-

ergy localization process that we propose, small ampli-
tude breathers are generated by spontaneous modulation
of some energy initially evenly distributed in the system,
and then collisions favor the growth of some of the exci-
tations at the expense of the others. The process requires
generally several collisions. In order to study this efFect
in a controlled manner, we have confined two breathers
between two impurity sites where the on-site potential
V(u) is removed. These sites act as perfectly reflecting
walls for the breathers which bounce back and forth be-
tween the defects. If two solitons were sent toward each
other in such a system they would simply pass through
each other many times as they oscillate in the "box." For
discrete breathers, the picture is very different. Figure 3
shows a typical numerical simulation result. To generate
this figure, two breathers of unequal amplitude have been
sent toward each other. After 5 collisions, only a large
amplitude breather subsists in the system and the smaller
excitation can no longer be distinguished from the small
amplitude waves which have been radiated during the
collisions. Moreover, as one of the breathers grows in
amplitude, its PN barrier increases and the breather is
finally completely trapped by discreteness. It is impor-

FIG. 3. Numerical simulation of the time evolution of two
discrete breathers sent toward each other between two reflect-
ing defects situated at sites 30 and 70. The initial amplitudes
of the breathers are in the ratio A„si,t jAi,a ——1.36. The fig-
ure shows the energy density in the discrete chain using a
contour plot. Darker regions correspond to regions where the
energy density is higher.

tant to notice, however, that it is still slowly growing
as shown in Fig. 4 because it collects some energy of the
small amplitude waves generated in the collision. The de-
tail of the interaction between discrete breathers depends
on the precise conditions of the collision, and in particu-
lar on the relative phases of the two breathers when they
collide. It may even happen that, in a single collision,
the bigger breather loses some energy. However, we have
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FIG. 4. Time evolution of the energy of the three central
particles of the biggest breather in the numerical simulation
of Fig. 3.

3937



VOLUME 70, NUMBER 25 PHYSICAL REVIEW LETTERS 21 JUNE 1993

observed that the average effect of multiple collisions oc-
curring randomly in a lattice, is always to increase the
amplitude of the larger excitations. This phenomenon is
very general and very robust to perturbations. In particu-
lar, the same behavior is found in a thermalized system,
which is important for physical applications. To check
this point, we have prepared thermalized lattices by run-

ning constrained temperature numerical simulations with
the Nose scheme [10].

Then we have launched couples of breathers in the
chain and noticed again that the bigger breather grows
at the expense of the smaller one. In fact, we observe
that its growth rate is larger in the presence of thermal
fluctuations because it collects some energy from the fiuc-

tuations. The results do not depend on the boundary
conditions. Multiple collisions can also be generated by
periodic boundary conditions and the same results are
found. More importantly, the results do not depend on
the particular nonlinear lattice model which is consid-
ered. Using the more physical Morse potential instead of
V(u) given by Eq. (1) leads to the same general conclu-
sions.

Discreteness can be viewed as a perturbation of the
integrable NLS equation which can be derived for many
nonlinear lattice models in the continuum and medium
amplitude limit. Therefore, one might have expected
that the usual property of the solitons of passing through
each other without energy exchange would be destroyed
as the integrability is lost. This is, however, not so obvi-
ous because, in the first order of perturbation, conserva-
tive perturbations do not cause energy exchange in two-
soliton collisions [11]. Moreover, the most remarkable
result is that the world of discrete solitons is as merciless
for the weak as the real world: in the presence of discrete-
ness, breather interactions show a systematic tendency to
favor the growth of the larger excitation at the expense
of the others.

However, the process contains also its own regulation
mechanism because of the fast increase of the Peierls bar-
rier with the amplitude of the breathers. When they
become large enough, the breathers stay trapped by dis-

creteness. As a result, energy initially evenly distributed
over the lattice tends to concentrate itself into large am-
plitude breathers, but the localization stops before all the
energy has collapsed into a single very large excitation.
The mechanism of discreteness-induced energy localiza-
tion that we have described here can appear in a large
variety of physical systems involving lattices. In partic-
ular, it is, clearly at work in a model of nonlinear DNA
dynamics that we have investigated recently [12]. Numer-
ical simulations of the model at constrained temperature
show that, in the steady state, thermal energy tends to
localize itself around some sites and consequently the lat-
tice in equilibrium is very far from equipartition of en-
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