
VOLUME 70, NUMBER 25 P H YSICAL REVI EW LETTERS 21 JUNE 1993

Microscopic Description of Tunneling Systems in a Structural Model Glass
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We present a quantitative method which systematically finds tunneling systems in glasses and hence
allows a microscopic check of the standard tunneling model. We apply this method to a two-component
model amorphous alloy. The major assumptions of the standard tunneling model are qualitatively
verified. Small quantitative difterences in the distribution of the tunneling matrix elements explain why
the experimental temperature dependence of the specific heat is superlinear and the thermal conductivity
is subquadratic. Connections to the soft-potential model and recent strong-coupling models are dis-
cussed.

PACS numbers: 61.43.Fs, 65.40.—f

At low temperatures (T & 1 K) glasses possess proper-
ties markedly diA'erent from the behavior of crystals, e.g. ,
the temperature dependence of the specific heat C(T)
ec T" ' and the thermal conductivity tc(T) cc T'
[1-3]. The main characteristics of the low-temperature
properties of glasses have been explained by a phenome-
nological tunneling model which we call the standard tun-

neling model (STM) [1,2]. In the STM it is assumed
that localized excitations with very low energies E exist in

glasses. They are regarded as excitations in such double
well potentials (DWP's) which by chance happen to be
nearly symmetric. It is generally assumed that the ex-
istence of DWP's is due to the disorder in glasses so that
a local rearrangement of atoms might switch the system
between two adjacent local energy minima. For given T,
DWP's with E of the order of k~T dominate the physical
properties. In such DWP's a transition between the two
minima is possible via tunneling. Therefore we will refer
to them as tunneling systems (TS's) which are character-
ized by an asymmetry h, and a tunneling matrix element
Ap.

In the STM it is assumed that the distribution of TS's
is given by

P(A, Ap) =Pp/Ap,

which corresponds to the least biased distribution. The
form of P(h, hp) implies that the distribution of the exci-
tation energy E =(6 +Ap) 'I is independent of E. Ex-
cept for small systematic deviations the temperature be-
havior of C(T), tc(T) and further physical quantities like,
e.g. , the absorption of sound are correctly predicted. Ex-
perimentally it turns out that for most glasses Pp is in the
range (0.5-3) x 10 J ' m [4].

At the present time no microscopic justification of the
STM exists. Furthermore in recent years the validity of
the STM has been questioned and alternative models
have been proposed [5-7]. They are based on the as-
sumption that the interaction between TS's, which is

mediated by phonons, is much stronger than the intrinsic
energies of the individual TS s. This assumption could be
checked, if it were possible to estimate, from a microscop-
ic picture, the density of TS's, hence the value of Pp, and

In a first step a glass configuration [r; tj is constructed
which corresponds to a local minimum of the potential
energy. This is achieved by quenching an equilibrated
computer liquid [10]. In a second step it is checked
whether a second local energy minimum [r; ttj exists
which is adjacent to the original one. As a measure for
the distance between two configurations we choose the
mass-weighted Euclidian distance

1/2

dist([r; ~},[r; qj)—:g '
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with m=g;m;/N. It is important to keep the center of
mass of the glass fixed. Finding the [r; ttj by a gradient
method requires a starting point which is already in the
neighborhood of this minimum. We assume that the
atomic rearrangements which correspond to a specific
DWP are mainly described by the movement of one atom
and its n nearest neighbors (n = 10-20). Based on this
assumption, which is subsequently checked self-consis-
tently, we realize this step in the following way: (a)
selection of one atom and its n nearest neighbors, (b)
search for the energy minimum [r; pj in this subspace
with the restriction dist([r;pj, [r; Lj) =dp for a given
value of dp of the order of the expected distance between

the deformation potential y. By y the coupling between
TS's and acoustic phonons is described.

In this Letter we present a simulation procedure which
is able to describe the low-energy excitations in a glass on
a microscopic level. Some previous attempts to detect nu-

merically DWP's were based on the assumption that a TS
is described by the motion of a single atom [8,9]. We
show that this assumption is unrealistic. More realistic
DWP's were found in simulations by Weber and Stil-
linger [10]. Since they chose a rather time-consuming
method to detect DWP's, they only reported a few
DWP's.

Let the glass consist of N atoms with masses m; and
position vectors r;(1 ~ i ~ N) so that its total Hamiltoni-
an reads

' 2

(2)
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where E~i(x) describes a DWP with minima at x=0
and x=d. Note that the mass, entering HDwp, does not
depend on the microscopic structure of the DWP. Apart
from d the DWP is characterized by its asymmetry 5 and
its potential height V (the energy difference between the
barrier and the upper well). A better approximation of
the reaction path is the shortest path between jr; L] and
[r; R] which crosses the saddle point between both con-
figurations, yielding modified values for V and d. A nu-
merical procedure for the determination of the saddle
point is given by Weber and Stillinger [10] and has been
implemented in our routine.

We treat the same system that Weber and Stillinger
analyzed: an amorphous nickel phosphorus mixture near
the eutectic composition of 80% Ni and 20% 'P [10].
The pair potential between two atoms a distance r apart
is described by

the two energy minima, and (c) relaxation of the whole
glass. Using this procedure the probability is rather large
that in the rare cases in which an adjacent energy
minimum is present, [r; ti] is close to [r; g] so that the
gradient method in (c) is able to reach this minimum. It
is convenient to use a simulated annealing method in step
(b) [11]. We define d=dist([r; L], [r; ~]). In a first ap-
proximation the reaction path between [r; 1.] and [r; R] is
described by the configurations [r;,p(x)] with r;,p(x)
=r; L+ (x/d)(r; ~ —r; t, ) where x is a variable describ-
ing the position along the reaction path. Since we are
only interested in the dynamics along the reaction path
we may neglect the other degrees of freedom in Ht, t,~,

yielding
2

m
How p

= x +Epoi(x),
2 dt

(4)

(5)

with a =1.652o', where cr=2.2 /lt is the unit length. Here
i or j = 1 designates Ni, while i or j=2 designates P.
Realistic values for 2 and a are A~~ =8200 K, a]~ =1.0
(Ni-Ni), 3|2=1.53|1 a|2=1.05 (Ni-P), and A2q
=0.52|1, a22=1. 13 (P-P). The mass density pn, as de-

duced from the experimental value, is pti=8348 kg/m .
The value of m is 9x10 kg. We choose N =150
atoms and implement periodic boundary conditions. The
simulations were performed on a RS6000 workstation. In
what follows we denote the set of all DWP's with the
properties O. lo & d & 1.0o, V& 600 K, ~A~ & 800 K by

We choose do=0.4o., n =16 and systematically vary
the initial atom in step (a). It turns out that, by the
above routine, a particular DWP C So is found on aver-
age 8 times, with variations between 1 and 20. It rarely
happens that a DWP C 2)ti is only detected once or twice.
Furthermore, for DWP's E 2)0 there are hardly any
correlations between their potential parameters and the
frequency with which they are found. Therefore we may
conclude that most of the DWP's E 2)0 are detected and
the few which are not detected are equally distributed in

2)0.
We analyzed n, =220 diAerent glass configurations by

the above method. We found 310 DWP's E 2)0 which on
average corresponds to one DWP E So per 106 atoms.
Their distribution with respect to h, and V is shown in

Fig. 1(a). Small values of d and V occur more frequently
than large values of h, and V and furthermore h, and V

are strongly correlated.
The participation number p, which is a measure of the

size of the cluster of atoms which participate in the
motion between the two minima, may be defined by

p =d /d~, „, where dm, „denotes the maximum distance
any single atom moves. In Fig. 2 we show the distribu-
tion of p. We see that for the large majority of DWP's p
is smaller than 8. It turns out that the character of this
distribution does not change significantly if we vary n be-
tween 10 and 20. Simulations on glasses with N=64
yield approximately the same distribution function.
Changes occur only for values of N as small as 32.
Therefore we may conclude that neither the choice of n

nor the fact that we "only" simulate glasses with N =150
atoms has significant consequences for the nature of the
DWP's. In the analysis of soft potentials, rather than
DWP's, Laird and Schober determined participation
numbers of the order of 20 [12].
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FIG. 1. (a) Distribution of the 310 detected simulated
DWP's E 2)0 with respect to the asymmetry h and the potential
height V. (b) Distribution of the 310 detected simulated
DWP's with respect to A for diff'erent regions of V [V/kii ( 100
K (0), V/kii) 100 K (+)] as compared to the distribution de-
rived from the DWP's B 2)0 generated from the p; (straight line
and dashed line, respectively).
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FIG. 2. Distribution of the participation number p for the
310 detected simulated DWP's C 2)0.

Among the 310 DWP's only one DWP has a value of
E & 1 K. Since the number of low-energy excitations is

supposed to be very small this does not come as a
surprise. A detection of a thousand DWP's in this energy
range, which is the minimum basis for a careful statistical
analysis of the TS distribution function, requires an in-
crease of the product n, N, and hence of the CPU time,
by a factor of at least 1000. This immediately excludes
such a procedure. Because of the strong statistical corre-
lations between V, 5, and d it is not obvious how to ex-
tract information about DWP's with E & 1 K from our
set of DWP's. However, there does exist a way to get this
information. We describe each DWP by the fourth-order
polynomial E~t(x) =w2x +w3x +w4x such that the
three parameters h, , V, and d are correctly reproduced.
Selecting both minima of a DWP as x =0 we obtain two
triplets (wz, w3, w4) per DWP. Hence this procedure
yields a set of 620 triplets [(wz, w3, W4)]. Discretizing
each ~; axis this set corresponds to a discrete distribution
function Ptpt [(wz w3 w4). AnticiPating that the [w;] are
statistically independent we first determine functions
p;(w;), such that the variance g~=—([ptpt ](wQ w3 w4)
—p2(wz)p3(W3)p4(W4)] ) is a minimum. The brackets
denote the sum over the discretized ~; axes. Then we

randomly generate 620 new triplets (wz, w3, W4) E X)p,

each with probability p2(wz)p3(W3)p4(w4), and perform
the same statistical analysis. This new set of triplets
yields a variance g2. Since by construction the generated
set of triplets is based on independent distribution func-
tions p;(w;) the ratio of g~/g2 is a good measure for the
statistical independence of the [w;] in our original set.
Only in the case of statistical independence gi =@2, oth-
erwise g& is significantly larger. In our case it turns out
that gi =@2, which proves the statistical independence.
In the same way we can show that a diferent choice of
the polynomial E~t(x) =up(u2x +u3x +x ) does not
lead to independent distribution functions. Our result is

FIG. 3. Distribution of P(h, hp) as derived from the DWP's
generated from the p;. The straight line corresponds to the pre-
diction of the STM. P(h, hp) rx 1/Ap. P(A, Ap) has been nor-
malized such that P(A, Ap=kg10 5 K) =1.

further confirmed by comparing the original distribution
of DWP's with the distribution of generated DWP's in

the (V,h, d) space. In Fig. 1(b) the results for the (V, A)

plane are presented. Taking into account the statistical
errors of the original distribution, it is reasonably well ap-
proximated by the generated distribution.

In the last decade the soft-potential model has been
developed in a number of publications [13,14]. This
model assumes that the DWP's can be parametrized as

E~t(x) =up(uzx +u3x +x ) with a fixed value of up

and independently distributed values of u2 and u3. As-

suming reasonable distribution functions for up and u3
several low-temperature properties of glasses could be
well explained. We believe that our approach can serve
as a microscopic foundation for a generalized soft-
potential model, based on three distribution functions in-

stead of two. Since we chose a microscopic approach, our
distribution functions have a microscopic foundation and
are thus not postulated within the framework of a phe-
nomenological model. Microscopic determinations of dis-
tribution functions within the soft-potential model were
until now restricted to the analysis of normal modes of
two coupled Si04 tetrahedra [15].

From the p;(w;), a large number of DWP's can be gen-
erated. The corresponding values of ho can be deter-
mined from solving the Schrodinger equation for HDwp.
Since the minima of the DWP's describe local energy
minima of the whole glass, the resulting tunneling matrix
elements are already renormalized. Based on this set of
DWP's we may check the statistical assumptions of the
STM. In agreement with the STM it turns out that for
~A~/ka (4 K the distribution function P(A, dp) is in-

dependent of A. The dependence of P(h, hp) on

is shown in Fig. 3. For Ap/kg (0.01 K we obtain
P(d, hp) ee I/dp with @=1 in agreement with the STM.
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For 0.05 (Ao/k~ ( I K the value of e is approximately 4

which leads in a first approximation to C(T) cc T and
Ic(T) cc T . This demonstrates that this small departure
from the prediction of the STM is fully consistent with
experimental results. A detailed analysis will be given in
a subsequent paper. For ho/kg) 1 K a strong decrease
of E can be observed. This indicates that h,o/k~ ap-
proaches the crossover temperature To, for which the
temperature dependence of C(T) and x(T) changes
dramatically. Typically To is of the order of a few kelvin
[14]. Qualitatively, the decrease of e is directly connect-
ed to the fact that the number of DWP's with small
values of V is very large [see Fig. 1(a)]. Therefore the
observed behavior of P(h, hp) can be qualitatively ex-
plained without using details of our statistical analysis.

On average, generation of 405 DWP's c 2)o is neces-
sary to obtain one D%'P with F. & 1 K. Together with
our above result which connected the number of DWP's
C So with the total number of atoms we are able to

determine the eA'ective density of TS s which formally is
defined as

n, a.(E) =g dhJ dAo 8'[E —(h +ho) ' ]P(h, hp) .

(6)
Within the STM we have n, q(E) =Po. For E/ka =I K
we obtain n, g = 1.6 & 10 J ' m which is a factor of
4-20 larger than typical values known from literature
[4). This result is robust against variations of the param-
eters of our statistical procedure, e.g. , the size of 2)0 and
against variations of the cutoff parameter in Eq. (5). Ac-
tually, n, ff has been experimentally determined to be ap-
proximately 2X 10 J 'm for NiP [16]. Because of
the additional interaction with electrons it is not clear
how reliable this value is.

In summary, for a structural model glass we have mi-
croscopically identified the DWP's which were postulated
in the STM. Qualitatively all statistical assumptions of
the STM have been justified. The small quantitative de-
viations from the STM are fully consistent with experi-

mental observations. Assuming a typical value for the
deformation potential y of the order of 1 eV [4] our value
of n, p implies that our model glass is correctly described
by the weak-coupling picture. We believe that our
method has a wide range of applications and will help to
answer the question how the structure of a glass inAu-
ences the low-temperature properties, as well as be ex-
tended to explain the physics of glasses at temperatures
above 1 K without adjustable parameters.
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