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Interaction of Surface Waves with Vorticity in Shallow Water
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Vortical Aows in shallow water interact with long surface waves by virtue of the nonlinear terms of the
Quid equations. Analytical formulas are derived that quantify the spontaneous generation of such waves
by unsteady vorticity as well as the scattering of surface waves by vorticity. In a first Born approxima-
tion the radiated surface elevation is linearly related to the Fourier transform of the vorticity. The
"dislocated" wave fronts that are analogous to the Aharonov-Bohm eA'ect are obtained as a special case.

PACS numbers: 47.35.+i, 47.32.—y

Nonlinear effects in one-dimensional surface wave
propagation over a shallow fiuid have been widely studied
in the past two decades in association with solitons [1].
What happens in two dimensions is, by comparison, far
less understood [2]. The effect of vorticity [3] and of sub-
merged bodies [4] on free surface motion has also been
studied, again in one dimension, and the vortex-surface
interaction is the subject of much current research [5].

In a diAerent vein, in recent years it has become ap-
parent that the nonlinear interaction between sound and
vorticity at low Mach numbers can be profitably under-
stood in terms of concepts borrowed from classical field
theory of sources and waves [6]. This has allowed for an
understanding of vortex dynamics in a slightly compressi-
ble fluid [7] and has suggested the use of ultrasound as a
probe of vorticity in both ordered and disordered Aows

[81. Recent experimental results have confirmed the
soundness of this proposal [9]. On the other hand, it is
well known [10] that the nonlinear propagation of sound
obeys similar equations as the nonlinear propagation of
surface waves in shallow water, and it is the purpose of
this paper to apply the concepts that have been of use to
understand the interaction of sound with vorticity to the
understanding of the interaction of two-dimensional sur-
face waves with ordered or disordered vorticity in shallow
water.

Consider an incompressible Auid of undisturbed uni-
form depth h moving with velocity v in a uniform gravita-
tional field g. We shall refer to it as shallow water al-
though of course it need not be water. The free surface
will be described by

z =((x,y, t),
where g=h+g(x, y, t), and ( is the deviation of the sur-
face away from the horizontal, whose typical length
scales will be supposed to be much longer than h, thus al-
lowing for the neglect of surface tension. In shallow wa-
ter vertical variations of v& are neglected and the govern-
ing equations are

+V~ (gv~) =0,
Bt

Bvg

Bt
+ (v~ V~)v~ = —gV~(,

where the subindex 4 means horizontal, or x-y, com-
ponents and will be omitted from here on. Equations (1)
are supposed to be evaluated at z =g, and viscosity has
been neglected. The boundary condition at the bottom is
then v, (z =0) =0. These equations are similar to, but
not identical with, the equations for a compressible, adia-
batic bulk flow and they can be combined to yield

a' —ghV'(=hV. [(v V)v)—
Bt

[V (vg)]. (2)

This is a wave equation for the surface waves with a
source term due to the nonlinear couplings. One can
think then of at least two situations of interest when there
is a bounded (two-dimensional) vortical flow with typical
velocities very small compared to dgh: One is the spon-
taneous generation of surface waves by this Aow, in anal-
ogy with the aeroacoustic generation of sound by vortical
Aows. The other is the scattering of surface waves by the
Aow.

The reason for the surface wave generation by a
bounded Aow is that, although surface deformations will
not be the dominant eAect at the source, far away from it
they will decay, because of their wavelike nature, like
(distance) 't, while the two-dimensional flow associated
with the source, being incompressible, will decay like
(distance) '. A formal solution of Eq. (2) can be writ-
ten as a convolution of the right-hand side with the Green
function for the two-dimensional wave equation. If sur-
face elevations are neglected at the source, an acceptable
approximation, the source looks almost like the Lighthill
source term [11]. The similarity is, however, not an iden-
tity because in the present case V&. V&&0.

In the spontaneous generation of surface waves by a
flow of bounded (in space) vorticity the second term in

the right-hand side can safely be neglected because sur-
face deformations are supposed to be negligible at the
source and one obtains the following expression for the
far field surface waves spontaneously radiated by such a
Aow:

(mAu)e VG,h

C
2

where u is a perfectly two-dimensional incompressible
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flow and rD=VAu is its (two-dimensional) vorticity. This
is in very close analogy to the formulas for aeroacoustic
sound derived by Powell and Howe [12] which are best
manipulated in Fourier space [13],where

'll

H
8n e

v=v, +u, (3)

where u is a perfectly two-dimensional incompressible
vortical flow with a perfectly flat surface and v, (v, «u)
is what is needed for v to satisfy Eqs. (1). Moreover, the
difl'erential equation (2) can be turned into the integral
equation

g=g;„c+Ges, (4)

where g;„, is in the incident plane surface wave and Gas
is a convolution of the Green function G for the wave

equation with the source

is a Hankel function with outgoing wave boundary condi-
tion.

The case of scattering of a plane wave can be studied
with ease in the case that wave frequencies v are high
compared to any frequencies 0 associated with the target
Aow, and Auid velocities v, associated with the surface
wave are small in comparison with those associated with
the vortical Aow, u, which in turn are supposed to be
small compared with c=dgh. To this end we write

three components:

$ $1+$2+$3

where

si =hV (roxv, ),

s2 =It V (u v, )— (u. V)g

for which velocity at the surface and surface elevation are
related by

6t
gV

Using the fact that, in the far field

$3 hV [(u V)u]

The source $3 corresponds to the spontaneous genera-
tion of surface waves discussed above and it will not be
considered further in the scattering context since the
waves so generated are of much lower frequency than the
incoming and scattered waves. For weak surface waves
the scattered amplitude will be much weaker than the in-
cident one and Eq. (4) can be solved in a first Born ap-
proximation, that is, replacing v, by the incident plane
wave value

v;„c =vpncos(kp x vpt ),

s =hV [(v V)v] — [V (vg)] .
t

(5)
x 8GPQ' ~
c t

and integrating by parts it is tedious but straightforward
to show that if the scattered wave is written as

Substitution of the decomposition (3) into the source
(5) and neglecting the horizontal components of the vor-

ticity, a valid approximation in shallow water, as well as =~ +~gscatt &1 g2 ~

terms quadratic in U„ leads to a source that is the sum of
where g, =Gas„a =1,2, then

/scan = G4 [V' (ro
cosO

g cosa —
1

where 0 is the scattering angle and co the vorticity. Using the far-field expression for G,
r 1/2

expi +-vox/

c 4
1 cG(x, v)—

1 8u rlvinc " 8 Bu
g~ =(kp x —1)(2+ 2

G0 —kp x vine
gp Bt Bt dt Bt

The second term on the right is of order —0 vuvp/c and can be neglected with respect to g2, which is of order —kpttvp,
in the case under consideration of incident frequencies much higher than typical frequencies associated with the vortical
target: Q (( vo.

We are thus finally led to the relation

this expression becomes

sin8cos8
cosO —1

K V

2c3ix/

1/2

et(vlxl/c+3xt4) -
( V )co q, v —vo

C
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where L is the length of the order of the spatial extent of
the incident wave. Formula (7) suggests a possible
nonintrusive way to probe vortical Aows in shallow water
using surface wave scattering.

Berry et al. [14] have remarked that a plane wave of
wave vector k propagating along the x direction incident
on a stationary point vortex will give rise to surface defor-
mations that can be locally (as opposed to globally) de-
scribed by a multivalued phase:

i (kr castt+ vt a+8)

corresponding to wave fronts exhibiting a dislocation at
the position of the vortex. Here (r, O) are polar coordi-
nates centered at the vortex and a = vt /c, where I is the
vortex circulation. For the dislocation to be noticeable a
must be of order 1. It is of interest to see how this is re-
lated to the results reported above, which are not immedi-
ately applicable since the scattering of surface waves by
vortical Aows was worked out for high frequency waves,
for which this last condition is violated. Indeed, at a dis-
tance —k from a point vortex the frequency of the vorti-
cal flow is 0 —I/k which is —v when a —1.

In the presence of a steady divergenceless background
flow U giving rise to surface deformations go, small veloc-
ity v and surface deviations g will obey the equations,
easily derived from (1),

+U V g+hv'lt =0,

(8)

+U. V /+go=0,

where III is the velocity potential for the velocity, v =V&,
which exists locally outside the vortex core. Quadratical-
ly small terms have been neglected and position is sup-
posed to be su%ciently far away from the vortex core that
gradients are dominated by wave vectors. Under the ad-
ditional assumption that U «c, Eqs. (8) yield

t) &+2U V & —c'V'p=o
tJt IJt

(9)

Note now that the velocity field outside a vortex is the
gradient of a multivalued scalar potential which is pro-
portional to the polar angle centered at the vortex:

which is the promised relation between scattered surface
wave amplitude at position x and frequency v in terms of
m, the Fourier transform of vorticity. The incident wave
has (velocity) amplitude vo and frequency vo, q is the
momentum transfer. Note that the apparent divergence
of this expression for small scattering angles is an artifact
of taking an incident plane wave which is, technically,
infinite. The angular dependence will break down for
wavelengths X at angles such that

sin 8—k/L,

U=V re
2Ã

Looking now for time harmonic solutions in the form

l vt l &D

we have that with

vt 0
2R'C

p obeys the equation

2
v'e y=0,

C
2

giving rise to the dislocated wave fronts of Berry et a1.
[14].

In addition to the dislocated incident wave there is a
scattered wave. In the case of the Aharonov-Bohm effect
[14] the latter can be calculated using vanishing bound-
ary conditions at the "vortex" core. The scattering mech-
anism in the Auid case is difTerent, its origin being not in

impenetrable boundary conditions but in the nonlinear in-
teraction terms that were neglected above. The computa-
tion of this eff'ect off'ers an interesting challenge which is,
however, outside the scope of the present paper.

To conclude, we have studied the nonlinear interaction
between surface waves (for a two-dimensional surface)
and vorticity in shallow water. Analytical formulas for
the generation and scattering of such waves by any (two-
dimensional) vortical flow have been derived under the
following assumptions: (a) Time scales are such that
viscosity can be neglected. (b) Length scales are such
that surface tension can be neglected. (c) For scattering,
the frequency of the incident wave is high by comparison
with the (inverse of) the time scale of the vortical flow,
and the particle velocity associated with the wave is sup-
posed to be small compared with the velocity of the vorti-
cal Aow, which in turn is supposed to be small compared
to Jgh, the phase velocity of the waves. Dislocated wave
fronts analogous to the Aharonov-Bohm eff'ect have been
obtained as a special case. The question naturally arises
as to what happens when the Auid is not shallow. The
point of view presented in this paper, namely, that of
studying the nonlinear interaction between surface
motions and vorticity by way of successive approxima-
tions using ideas borrowed from classical field theory,
may be of use in studying this problem.
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