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Rayleigh-Benard Convection near the Gas-Liquid Critical Point
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(Received 12 March 1993)

We present experimental results on Rayleigh-Benard convection in SF6 near the gas-liquid critical
point. We measured the critical temperature difference for the onset of convection, ATp, as a function
of the reduced average temperature r = (T —T,)/T, and found &To = 525 x r , w'hich is close to
the expected power law behavior. The strong temperature dependence of the physical properties is
used to scan the Prandtl number in a wide range. A new, many "target" pattern state, initiated by
a defect instability, was observed.

PACS numbers: 47.27.—i, 44.25.+f, 47.20.—k

Rayleigh-Benard (RB) convection is a well established
model system in which to quantitatively study nonlinear
properties of pattern formation and dynamics, both ex-
perimentally and theoretically [1]. The system has one

control parameter, the Rayleigh number R = P„gd DT

which completely determines the onset (P„is the isobaric
thermal expansion coeKcient, g the acceleration of grav-
ity, d the thickness of the fluid layer, AT the tempera-
ture difference across the fluid, v the kinematic viscosity,
and r the thermal diffusivity). Another parameter, the
Prandtl number P = —„,deflnes the physical properties of
the Quid. Together with R the Prandtl number describes
the secondary bifurcations and pattern selection. There
are two well known drawbacks of RB convection. First,
the absence of an experimental system in which P can
be scanned continuously in a wide range, and second, the
experimental limitations which make it difBcult to work
with cells having a very large aspect ratio I' = D/2d (D
is the diameter of the cell). Only in sHe- He superfluid
mixtures is it possible to scan the Prandtl number, P,
in a range from about 0.02 to about 1 by varying the
average concentration and temperature [2].

We describe in this Letter a new system where both
of these drawbacks can be overcome independently. We
present results on RB convection in SF6 near its criti-
cal point [3] (Tc = 318.7 K, p, = 37.8 bar, pc = 0.730
g/cms). Since the thermodynamic and kinetic properties
of fluids have a power law behavior asymptotically close
to the critical point, it is easy to obtain the following
asymptotic scaling behavior of the critical temperature
difference for the onset of convection as a function of
the reduced average temperature [4] r = (T —T,)/T, :
LTp 7~+". Here, T is the average temperature of the
fluid, p and v are the critical exponents of the susceptibil-
ity and the correlation length, respectively [3] (p 1.24,
v = 0.63), and ETp is the critical temperature differ-
ence for the onset of convection. We have neglected
the power law behavior of the shear viscosity because
its singular contribution, which diverges with a small
exponent 0.05, is negligible with respect to its regu-
lar contribution even very close to T, . Usually, we keep

3 1 02

c 10'

Q)

E

a
1 01

10'
O

g30I
(D

G)
Q)10' ~

CD

3 0 A10 I I I I I I I I

3 10 10 10 4 10
7=(&T&- T)/T

C C

FIG. 1. Calculated values of the Prandtl number P (solid)
and the non-Boussinesq parameter Q at onset (dashed) as a
function of 7 for p = p, . The uncertainty in P is about +10Fo.

ATp/T, « r, so that the thermodynamic scaling remains
valid. An obvious lower limit for ATp when r —+ 0 is
the adiabatic temperature gradient, given by gPpT/Cp,
which is irrelevant in our experiment [4). For the same
reason the asymptotic behavior of the Prandtl number
near T, is given by P 7. , This means that P can
be changed continuously over many orders of magnitude
from about 1 to practically infinity by simply adjust-
ing T (Fig. 1). However, the strong temperature depen-
dence of the fluid properties leads to deviations from the
Boussinesq approximation (BA) in which RB convection
is usually treated [1]. The deviation from this approxima-
tion can be quantitatively estimated [5] by the parameter

Q = P,.
p p; p, , where the p, 's represent the nondimen-

sional variation of the relevant fluid properties evaluated
at the top and bottom temperatures, and the p, 's are lin-
ear functions of P . The Boussinesq approximation is
valid for Q « Rp (Rp is the critical Rayleigh number).
However, as many experimental [6, 7] and numerical [8]
results show, at Q 1 the deviation from the BA is
already significant. This is manifested by the appear-
ance of a backward bifurcation and hexagonal pattern
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near the onset as was recently clearly demonstrated [6,
7]. For a fixed value of d one obtains to leading order
an asymptotic scaling for Q ~ ~~+" i. This implies that
by varying T, one can scan Q as well (Fig. 1). Thus,
contrary to simple intuition, it is possible to work within
the framework of the BA even if the fluid is near T, .

The above presented considerations clearly illustrate
the definite advantages of this system. These are the fol-
lowing: (a) Convection in very thin layers can be achieved
close enough to T,. Consequently, very large aspect ratio
cells can be realized, which was presently only possible in
electrohydrodynamic convection in nematic liquid crys-
tals [9]. (b) P can be scanned continuously from about
1 to very large values in the same convection cell, which
is crucial for the understanding of pattern selection [1].
(c) Q can also be tuned in the same manner. (d) Since
convection in extremely thin cells becomes an attainable
goal, two basic problems can be addressed experimen-
tally: (1) One is the role of thermal fluctuations on pat-
tern formation in the vicinity of the convection onset,
which is decisive for our understanding of the interaction
between microscopic and macroscopic degrees of freedom
[10]. (2) In an extremely thin cell and close enough to the
critical point, one can reach the limit of strongly Buctuat-
ing hydrodynamics, where the macroscopic length scale d
is of the. same order of magnitude as the thermodynamic
correlation length ( ~ w . Then, the hydrodynamical
description itself becomes questionable.

SF6 was enclosed in a stainless steel vessel having a
sapphire window 19 mm thick and 102 mm in diameter.
A nickel plated copper bottom plate, to which a thermo-
foil heater was attached, sandwiched the Mylar spacer
defining the side walls. The vessel was coupled by a thin
tube to a small hot volume, in which pressure feedback
was performed by heating the fluid. Both vessels were
enclosed in a thermostated bath in which the long-term
stability was better than +1.0 mK. Long-term stability
of the bottom temperature was about +0.3 mK. Pressure
feedback allowed for long-term stability of +0.5 mbar. A
specially designed high spatial resolution shadowgraph
and computer enhancement were used for pattern visu-
alization. The thin cell allowed for precise direct optical
detection of the convection onset. The cell was 611ed far
from the critical point where the equation of state is more
accurate [ll]. The uncertainty in the desired density was
about +0.25Fo. Nonuniformity of the cell was caused
mainly by bending of the sapphire window, but did not
exceed 1.8 pm over the diameter of the cell. The cell itself
had a diameter of 30 mm, while the fluid layer thickness
was estimated to be 130 pm, resulting in I' = 115.

In Fig. 2 we present the experimental results of the
critical temperature difference for the onset of convec-
tion as a function of w for several densities. From Fig. 2
it is obvious that for reduced densities p„=p/p, close
to and slightly above 1, the data can be described by a
simple power law, whose exponent is surprisingly close to
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FIG. 2. Measured values of ATp as a function of 7 for
several reduced densities p„=0.93 (0), 1.00 (dots with error
bars), 1.04 (Q), and 1.17 (E).

the predicted one, p+ v. The best fit for p„=1.00 gives
(524 90 ~ 1 08) x &l.666+0.042 The coefficient of

the fit, which is proportional to Ro, deviates fram the the-
oretically predicted prefactor by less than a factor of 2.
The coincidence of the theoretically predicted and experi-
mentally observed value of the exponent can be explained
by a fortunate interplay between the temperature depen-
dence of the regular nondivergent parts and the singular
divergent parts of the physical parameters which con-
tribute to ATo in the range of 3.9 x 10 ( ~ ( 3.3x 10
In this range in particular, the thermal conductivity, A,
has a regular contribution of the same order of magni-
tude as its singular part which diverges as C„/(r/ (g is
the shear viscosity). The discrepancy of the prefactor,
on the other hand, is also due to the uncertainties of
the physical parameters forming R. Critical behavior on
thermodynamic paths where p P p, may be accounted for
by the inclusion of an additional field and leads to cor-
rections to scaling and rounding of the divergences [3].
This is obvious from the data for p„g1 and especially
striking for p„=1.17, since in general ATo p z. The
behavior of Rig indicates that thermodynamical critical
scaling can be applied to systems far from equilibrium
(provided ATo/T, (( ~), and that convection in much
thinner cells close enough to T, becomes attainable. The
results on convection in a cell of about 20 pm will be
published elsewhere.

As pointed out, by modifying ~ we change both P and
Q, which allows us to study pattern selection and non-
Boussinesq behavior in a single cell. In Fig. 3 we present
a plot of R/Ro vs P. We studied the pattern selection at
the critical density for four values of v in a limited range
of R. The experimental path is from ATo to AT ~„at
~ approximately constant, leading to small variations in
P. Since Q is roughly proportional (through the power
law dependence af the physical properties) to AT, a sig-
nificant variation in Q exists. Also shown in Fig. 3 are
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FIG. 3. Observed patterns at p„=1.00 as a function
of R/Ro and P: hexagons (i); rolls without defects (0);
roll patches and/or rolls having defects (A); target patterns
(k). The values of r at onset with increasing P are 3.28 x
10,1.60 x 10,7.62 x 10, and 3.98 x 10, respectively.
Target (f) and spiral patterns (Q) obtained at p„=1.17
are also shown for which 7. = 1.76 x 10 and 3.92 x 10
respectively.

FIG. 4. Observed patterns for p„=1.00. The values for
R/Ro, P, Q, and w are given in brackets respectively: (a)
hexagons (1.02, 4.2, 0.78, 3.28 x 10 ); (b) rolls (1.08, 4.2,
0.80, 3.29 x 10 ); (c) roll patches (1.04, 26, 0.13,3.98 x 10 );
(d) target patterns (7.04, 14, 1.6, 8.25 x 10 ). The bar repre-
sents 1 mm.

patterns observed at p„=1.17 and R/Ro = 4.63 for two
values of P.

At the critical density for small P or large ~, hexagons
were observed near the onset [Fig. 4(a)]. By increasing
LT a hysteretic transition to straight rolls was found, as
expected [6, 7]. The existence of hexagonal patterns near
the onset depends on the value of Q (Fig. 1), which is de-
termined both by ~ and d. For P —8, a continuous tran-
sition to rolls over the entire cell is observed [Fig. 4(b)].
At larger P = 15 and 25, the first patterns above the on-
set are disordered rolls with defects and grain boundaries
[Fig. 4(c)]. The characteristic size of these roll patches
becomes smaller with increasing P. At large and well-

defined values of R for P 8, 15, and 25 a transition to
a new type of pattern appears [Fig. 4(d)]. These "target"
patterns are initiated by a defect instability, either at a
grain boundary, or in the core of a dislocation, but most
often in the core of a disclination. The onset for these
patterns appears for Q 1.

Figures 5(a) and 5(b) show an instability in the core
of a dislocation which is reminiscent of the bridges de-
scribed by Newell and Passot [12]. Figure 5(b) illustrates
how this instability initiates the breakup of a short roll.
Consequently, the individual parts reconnect to eventu-
ally create a roll closed on itself [Figs. 5(c) and 5(d)].
In most cases, the core enclosed by a short circular roll
becomes unstable, giving rise to an additional concentric
roll [Figs. 5(e) and 5(f)]. The core, therefore, acts as a
source for the circular wave, creating the target pattern.
At LT ~„spatiotemporal chaotic behavior of many tar-
get patterns in the cell was observed. We observed target
patterns for a wide range of P numbers for large enough
AT, where Q becomes large. We also observed a tran-

sition from a many target to a many spiral state as well

as a transition from target to spiral turbulence [13] in

the range of P = 2.4 to 3.6 for p/p, = 1.17 by vary-

ing r (or P) Both s. piral and target patterns appear
at large enough Q, which indicates that these patterns
are intrinsic to non-Boussinesq systems, while the region

FIG. 5. One of the scenarios of target formation. The
parameters are P = 14.1, R/Re = 5.53, Q = 1.43, and r =
8.08 x 10 . Time between frames: 12&„(w„=d /r = 4.7 s
is the vertical diffusion time). The bar represents 200 pm.
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of stability of the patterns depends on the value of P.
Recently, it was shown both experimentally [7] and nu-
merically [8] that non-Boussinesq effects are essential to
spiral patterns. As is obvious from Fig. 3, target patterns
are stable for large values of P, while the spiral patterns
are stable in the low P regime.

Since curved rolls appear at large P and large Q, one
can conclude that nonvariational effects become signifi-
cant in this range of parameters. There are two sources
for nonvariational effects: one due to large scale flow
which is inversely proportional [14] to P and one due
to strong deviations from the BA [15). The appearance
of curved rolls at large P deflnitely indicates that the
second type of nonvariational effect is crucial here.

In conclusion, we have illustrated that RB convection
near the critical point is an advantageous system in which
to study pattern selection in a wide range of P and Q.
New target shaped patterns and target turbulence have
been observed. These patterns are initiated by a novel
defect core instability mechanism. A quantitative study
of this instability will be presented elsewhere.
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