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Weak Localization of Acoustic Waves in Strongly Scattering Media
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We report the first direct measurement of coherent backscattering of scalar acoustic waves by disor-
dered scattering medium. In two and three dimensions an excellent agreement between experimental
data and the predictions of simple diA'usion theory is found. These measurements have been done for the
time dependent and independent cases.

PACS numbers: 43.90.+v, 42.25.Bs, 63.20.Pw, 71.55.3v

The propagation of waves in media with randomly dis-
tributed scatterers has become a subject of intensive
research even since the eAect of electron localization in
metallic solids has been proposed by Anderson [1] in

1958. The subsequent interpretation of the underlying
physics [2-6] in the past decade has led to a significantly
new understanding of wave propagation in disordered sys-
tems. The localization effects known from weakly disor-
dered electronic systems have universal character and
may be used to describe classical as well as quantum
mechanical disordered systems. Thus they are a general
phenomenon common to any wave propagation. In the
recent years there have been numerous experimental and
theoretical investigations in several fields of physics,
mainly in solid state physics, optics, the microwave re-
gion, and also in acoustics. The coherent backscattering,
which is regarded as a precursor of strong localization,
has been proven in several optical experiments for both
the time dependent and independent cases [7-10]. In the
regime of strong multiple scattering and for probe sizes L
greater than the mean free path (I*) diffusion theory is a
useful starting point to the theoretical treatment of back-
scattering. The diffusion theory has to be adapted to the
experimental arrangements by using proper boundary
conditions.

In the field of disordered acoustic systems very little
experimental work has been done. Measurements on one-
and two-dimensional media confirm that for dimensions
d ~ 2 acoustic waves are always localized [11]. One- and
two-dimensional waveguides (ground mode propagation
and rigid walls) with different impurities like Helmholtz
resonators or variations of cross section have been report-
ed, as well as stretched strings with irregularly spaced
masses [12,13]. Also "third sound" experiments (two di-
mension) have previously been reported [14]. Localiza-
tion eAects in three-dimensional strongly scattering
acoustical systems are expected to be very difticult to
achieve experimentally [15], since the basic condition for
real scatterers is to fulfill the IoA'e-Regel criterion, which
requires the product kl* to be equal to unity or smaller.
Recently acoustic-wave localization in the presence of
shear resonances [16] has been reported, which seems to
be very promising.

We report here measurements of coherent backscatter-
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FIG. l. (a) Experimental arrangements: T, transducer; R,
receiver; BS, acoustical beam splitter. (b) Two-dimensional
medium.

ing in strongly inhomogeneous media by ultrasound,
namely, gravel stones (three dimensions) and parallel
brass rods (two dimensions), both in water. In this exper-
iment the enhanced backscattering has been investigated
for both the time dependent and independent cases. The
geometry of the media of anisotropic scatterers was al-
ways much larger than the mean free path l*.

The experimental arrangement is shown in Fig. 1(a).
Ultrasonic pulses of 2 MHz center frequency (which cor-
responds to a wavelength k =0.75 mm in water) and a
pulse duration of 8 ps (bandwidth 150 kHz at —3 dB)
were injected in a semi-infinite scattering medium by an
acoustical beam splitter (BS). The transducer as well as
the ultrasonic receiver have been positioned in the far
field. The spot illuminated by ultrasound was about 4 cm
in diameter. In the three-dimensional case the scattering
medium consists of small gravel stones in water. The
stones had irregular shapes and an average diameter of 6
mm with a standard deviation of 1 mm; the sample thick-
ness was about 20 cm. The sound velocity in water has
been determined to 1480 m/s. For the gravel stone medi-
um the eA'ective sound velocity measured in transmission
was 1920 m/s. Its absorption coefficient a, =21 m ' and
scattering coefficient a, =(I*) '=121 m ' have been
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determined in a different experiment [17]. Because of the
polydispersity of the scatterers this experimental value
has to be regarded as an averaged mean free path. In
steps of 1 the angle dependent backscattered intensity
has been recorded by an ultrasonic receiver. The signal
was digitalized by a 100 M Sample oscilloscope and
transmitted to a personal computer for further signal pro-
cessing. For ensemble averaging the probe has been ro-
tated out of the receiver axis. The two-dimensional probe
is shown in Fig. 1(b). About 2000 rods of brass with di-
ameter of 2 mm (a, =0, a, =71 m ') are arranged
parallel to the y axis and randomly distributed in the x-z
plane. The ensemble averaging in that case has been per-
formed by shifting the whole medium parallel to the x-z

plane.
Because of the large probe size a sound wave may un-

dergo many scattering events; in this region of multiple
scattering the problem can be treated by using diAusion
theory. For the unbounded medium the diff'usion equa-
tion can be written as

DV + G(R, R''t, t') =b(R —R')b(t —t') .

This formula describes the propagation of energy density
released at the point R' and time t

' to the location R at
the time t neglecting any absorption. Considering the
boundary conditions of the semi-infinite medium we ob-
tain the following Green's function [9]:

G(R, R';t) = [I/(4nDt) ]exp( p /4D—t) [exp[ —(x —x') /4Dt] —exp[ —(x+x'+2xo) /4Dt]], (2)

where the x axis is oriented perpendicular to the medium
surface. p=(y —y')e~+(z —z')e, describes the lateral
distance (parallel to the surface) of the first and the last
scatterer and xp is a length which enters in the boundary
conditions of the Green's function. The diffusion con-
stant can be written as D =cl*/d, where d is the dimen-
sion of the medium, neglecting the renormalization of D
due to localization eff'ects, c is the eff'ective sound velocity

!
in the disordered medium, and k and ko are the wave vec-
tors of the incoming and outgoing waves.

Convoluting this Green's function with suitable incom-
ing and emerging source distributions the total time and
angle dependent albedo defined as the ratio of the back-
scattered to the incoming intensity per solid angle calcu-

I
lates as

(3)

u(e)
2(xp+ l*)(xp/p+ l*)

a e, t
8x3/2

a) t= 18ps
b) t = 26@,s

a(ko, k;t) =(c/4+i* )„„dxd pdx'exp[ —(x/po —x'/p)/l*l [I+cos[(ko+k).p]]G(x,x', p, t) .

Referring to Tsang and Ishimaru [18] the exponential
term in the description of the coherent part differs for scattering only. An approximate description for the prac-
large angles 8 (pp =cos8o =1, p =cos8) between the nor- tical case of anisotropic scattering may be obtained [9] by
mal incoming and the emerging wave vectors. In our ex- replacing I* by the transport mean free path lir which
perimental setup we expect a coherent part of the albedo can be calculated from
only for small angles 0. Therefore the diA'erence men-
tioned above can be neglected. For the incoherent back-

Q p
=n cr(Q)(1 —cosQ)dQ

ground the integration yields to the well known Lambert
law for rough surfaces. In this case we can write the using the angular dependence of the scattering cross sec-
angle dependent exponent approximately as (ko+k) p
=2+8/k for normal incidence. After integration one gets
for the total albedo in the transient case

& ~ 1+exp —Dt
2 ff~ (4)

1
—exp( —2k xo)x 1+

k pl* (5)

These expressions are in principle valid for isotropic

One obtains the albedo in the stationary case by integrat-
ing Eq. (3) over time. Thus using k~, the magnitude of k
normal to the x axis, one gets

a(e)=- " 1+ +3 2xp 1

l* (1+k ~l*) 0
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FIG. 2. Experimental data of the albedo for two different
times: (a) t i 18 ps and (b) r2 26 ps; medium gravel stones, 2
MHz, averaged over 300 samples.
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FIG. 3. Time dependent experimental and theoretical results
(three dimensions), gravel stones, 2 MHz, t =22 ps, averaged
over 300 samples.

FIG. 5. Stationary experimental and theoretical results in

three dimensions, gravel stones, 2 MHz.
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FIG. 4. Time dependent experimental and theoretical results
for brass rods (two dimensions), 2 MHz, t =40 ps, averaged
over 150 samples (smoothed).

tion o(Q); n is the volume density of scatterers.
The experimental results obtained with the setup de-

scribed above are shown in Figs. 2-5. The angular
dependence of the backscattered intensity normalized by
the incident intensity for two different times t1=18 ps
and t2 =26 ps for the 3D medium is shown in Fig. 2. For
later times the angular width becomes smaller due to
longer scattering paths. Figure 3 compares the experi-
mental curvature and the theoretical predictions. The
theoretical results have been convoluted with the receiv-
ing directivity patterns and have been corrected by the
inAuence of the experimental arrangement. No adjust-
able parameter has been used. To compare the experi-
mental and theoretical data they have been matched to
the incoherent background. The value for lt*, and the
transport velocity has been determined by a different ex-
periment. Figure 4 shows the experimental and theoreti-
cal results (t =40 ps) for the two-dimensional medium.

In the stationary case, i.e., the time integrated back-

scattered intensity, the theoretical predictions are also
confirmed by the experimental data shown in Fig. 5 for
three dimensions. It must be pointed out that the in-
tegration over time of the experimental data should be
started after several scattering events to make sure that
the diffusion approximation is valid. In the figure we
start the integration after 2l&*, . The same result has been
obtained for the two-dimensional disordered medium.

In summary, we have presented observations of the
enhanced backscattering due to weak localization effects
of acoustical waves. The investigations covered two- and
three-dimensional scattering media. It could be shown
that the experimental data and the theoretical predictions
of diffusion theory are in good agreement.
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