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Weak Localization and Integrability in Ballistic Cavities
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We demonstrate the existence of an interference contribution to the average magnetoconductance,
G(B), of ballistic cavities and use it to test the semiclassical theory of quantum billiards. G(B) is
qualitatively different for chaotic and regular cavities (saturation versus linear increase) which is
explained semiclassically by the differing classical distribution of areas. The magnitude of G(B) is
poorly explained by the semiclassical theory of coherent backscattering (elastic enhancement factor);
interference between trajectories which are not exactly time reversed must be included.

PACS numbers: 05.45.+b, 03.65.Sq, 72.20.My, 73.20.Fz

The main approach to relating the quantum proper-
ties and the classical mechanics of a system is semiclassi-
cal theory which expresses a quantum property in terms
of the interference between certain classical paths [1].
Though numerical summation over paths can be used to
evaluate semiclassical quantities [2], the analytical work
to date includes only the interference between symmetry
related paths —the diagonal approximation (DA)—while
interference between paths unrelated by symmetry has
remained largely intractable. In spite of this, many an-
alytical results have been obtained; in the most studied
example, the occurrence of chaotic or integrable classical
dynamics determines the nature of the fIuctuations in the
quantum density of states [1].

In this paper we demonstrate a new quantum inter-
ference effect—a change in the average conductance of a
ballistic cavity upon applying a magnetic field —caused
by breaking time-reversal symmetry. Our semiclassical
theory builds on those for studying quantum chaotic
scattering [3—6] and fluctuations in the quantum con-
ductance [7]. Within the DA, we find that the aver-

age magnetoconductance, G(B), is qualitatively difFer-

ent for chaotic and regular cavities: saturation ver-
sus linear behavior. Our numerical results show good
agreement with this prediction, but also show that ofF-

diagonal terms —interference between paths unrelated by
symmetry —make a large contribution to the magnitude
of G(B), in some cases eliminating it. While one expects
off-diagonal terms to be important for very long paths
[1,8], the contribution of such trajectories in our cavities
is small because particles escape. Thus, this quantum
interference effect highlights a surprising failure of the
diagonal approximation in semiclassical quantum theory.

The change in the average conductance upon applying
a magnetic field is, of course, well known in disordered
metallic conductors and is called weak localization [9].
Despite strong similarities between ballistic chaotic sys-
tems and disordered systems, we show that weak local-
ization in ballistic systems is richer than in the diffusive
regime: In addition to the different behavior of chaotic
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FIG. 1. Transmission coefBcient as a function of wave vec-
tor for the half-stadium structure shown in the bottom right.
The T = 0 fluctuations (solid) are eliminated by smoothing
using a temperature (T = 6 K for W = 0.5 pm) which corre-
sponds to twenty correlation lengths. The offset of the result-
ing B = 2o.,imp curve (dotted) from that for B = 0 (dashed)
demonstrates the average magnetoconductance effect. Inset:
Smoothed transmission coefBcient as a function of the fIux
through the cavity (A:W/vr = 9.5) showing the difference be-
tween the chaotic (solid) and regular (dashed) structures.

and regular cavities, the effect of spatial symmetry and
short nonergodic paths is large.

Since transport coefficients of microstructures directly
measure scattering probabilities, they offer the possibil-
ity of direct experimental tests of "quantum chaos" [4,
7]. In fact, Marcus et aL recently reported [10] an ex-
perimental study of conductance fluctuations in which a
difference between nominally chaotic and regular shapes
was observed. They also noted a large magnetoresistance
peak at B = 0 and suggested a connection to weak local-
ization.

We compute the conductance of a cavity with two
leads by relating it to the transmission intensity through
G = (e2/h)T. Figure 1 shows T(k) for a half-stadium
structure calculated [11] using a square lattice and the
recursive Green function method. To reduce nonuniver-
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F" (k) = A,A„exp [ik(L, —L„)+ivrQ, ,„]. (2)

The paths in the sum, labeled s and u, are those which
enter at (2:, y) with fixed angle sing = +msgr/kW and
exit at (z', y') with angle sin 8' = +nvr/kW. In terms of
the action S„the phase factor is kL, = S,/h+ ky sin 8—
ky'sin8' plus an additional phase, P, „, associated with
singular points in the classical dynamics [11]. The pref-
actor is A, =

~
(Oy/88')s

~

/(Wcos8').
Because the classical transmission coeKcient is propor-

tional to kW/vr, we expect a linear contribution to the
average quantum transmission and call the slope 'T. By
averaging T(k) /(kW/vr) over all k [16],one can show [ll]
that only terms with paired paths, s = u, contribute to
?. The result,

? = — d(sin 8) d(sill 8 ) ) A8) (3)-1 —1 s(e,e )

is the classical probability of transmission. Thus, the
leading order term in the average quantum conductance
is the classical conductance [11].

The quantum corrections are best discussed in terms of
the reflection coefI1cient, B = N —T, for which identical
semiclassical expressions hold in terms of reflected paths.

sal effects, we study an asymmetric structure in which
a stopper blocks the directly transmitted paths; simpler
structures are discussed below. The rapid fluctuations of
T were studied previously [3, 7, 12]; here we concentrate
on the average conductance. A natural averaging proce-
dure is to convolve with the derivative of the Fermi func-
tion to simulate nonzero temperature. The shift between
the dashed and dotted curves in Fig. 1 is the average
magnetoconductance that is the subject of this paper.

The average T(B) in the inset of Fig. 1 shows that
this ballistic weak-localization effect can be substantial,
Traces for two structures are shown: a half-stadium
structure and a similar structure with straight rather
than curved sides. The classical dynamics in the half sta-
dium is chaotic [13, 14] while that in the straight-sided
structure is regular. In the straight-sided structure the
dynamics cannot be ergodic because the angle of a path
exiting from the cavity must be related to the angle at
entry through reflection from either vertical, horizontal,
or diagonal walls. The difference between the behavior
of these two structures —saturation versus linear increase—shows that ballistic weak localization distinguishes be-
tween chaotic and regular classical dynamics.

As a starting point for a semiclassical theory, we
write T(k) in terms of classical paths which traverse
the cavity [7, 15]. For leads of width W which support
N = Int(kui/vr) modes, the total transmitted intensity
summed over incoming (m) and outgoing (n) modes is

N N

T(k) =) ) T„=-„)) ) F„'"(k),
n=1 m=1 n, m s u

The quantum corrections to B are

) ) F„"„+) ) F„'"
sou num sou

(4)

where we have separated the terms diagonal in mode
number, MLI = Q„ I bR„„, from the off-diagonal
terms. From results in disordered conductors, one ex-
pects that coherent backscattering will influence R~(B)
[9]. Previous work [1,3—5] has shown that a typical diago-
nal reflection element is larger than a typical off-diagonal
element by a factor of 2 when the system is time rever-
sal invariant, a ratio known as the elastic enhancement
factor. We pattern our discussion of bBD after previ-
ous semiclassical treatments of the elastic enhancement
factor [4, 5, 17].

There is a natural procedure for flnding the average of
6R~ over all k [16] denoted (6'RD): The sum of N reflec-
tion elements each with

~

sin 8~ =
~

sin 8'~ can be converted
to an integral over angle, (7r/kW) P„~ f d(sin8).
Then, the only k dependence is in the exponent so
that the average eliminates all paths except those for
which L, = L„exactly. In the absence of symmetry
L, = L„only if s = u, but for time-reversal symme-
try (B = 0) L, = L„also if u is s time reversed. It
is crucial to consider the diagonal part of B in order
that the symmetry related paths satisfy the same bound-
ary conditions on the angles. A weak magnetic field
does not change the classical paths appreciably but does
change the phase difference of the time-reversed paths by
(S,—S„)/5 = 2O, B/$0 where 0, = 27r f A dt/B is the
effective area enclosed by the path (x2vr) and Pc = hc/e.
Thus we obtain

1
(6Rri(B)) =—

2 -1
d(sin 8)

s(e,e~,s(e, -e)
i20, B/po (5)

a k-independent contribution to G(B) which depends es-
sentially on only the semiclassical approximation. Thus
the average over all k eliminates all but the symmetry
related paths: We have shown that the contribution to
(bR) which is diagonal in modes is also diagonal in terms
of paths.

Evaluation of the second term in Eq. (4) is more dif-
ficult because this term necessarily involves paths which
are not exactly related by symmetry: The contribution
which is off diagonal in modes is off diagonal in paths.
These terms do not have a simple limiting procedure as
for (BRIC) above, and it is currently not known how to
evaluate them. However, our numerical results below
show that such off-diagonal terms are important.

For a chaotic system, one can estimate both the mag-
nitude and field scale of (6R~). First, if the mi~ing time
for particles within the cavity is much shorter than the
escape time, no preference is shown to scattering through
any particular angle. To be precise, we assume the outgo-
ing sin 0 are distributed uniformly for an arbitrary dis-
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tribution of ingoing trajectories. Classical simulations
show that this is approximately obeyed for the structure
in Fig. 1 and improves if the opening to the leads is
made smaller. Thus, we replace the sum over backscat-
tered paths in Eq. (5) by an average over all sin 8' and
find that the resulting expression for (bR~(B = 0)) is the
same as that for 7Z, defined as for? in Eq. (3). Second,
to estimate the field scale, we group the backscattered
paths by their effective area and average over the distri-
bution of this area, N(0, 8),

0.6—

CQ

cc 0.2
I

II 00
CC

diagonal

/

ota

-0.2 —"
off-diagonal 'I

'~

(a)

I I ~
I

1 I 1
I

(b)

/'
/

//

/
/

/

(b'RL (B)) =
7r/2

dON(0, 8)e' 10 2
k W/z

6 10

Previous theoretical and numerical work has shown that
in a chaotic system N(0) oc exp( —cr,iiO ) for large 0
independent of 8, where o,,~ is the inverse of the typical
area enclosed by a classical path [4, 7, 14, 18]. Using this
form for all 0 (an accurate approximation for structures
similar to those studied here [7, 12]) yields a Lorentzian
dependence on B. Combining this result with that for
the magnitude above, we find

FIG. 2. Change in the total reflection coefficient (solid), as
well as the diagonal (dashed) and off-diagonal (dotted) parts,
upon changing B from 0 to 2n, imp. The curves are smoothed
using a window of 1.5kW/vr [thirty correlation lengths for
panel (a), fifteen for (b)]. The dashed ticks on the right mark
the classical value of R. Note the roughly k-independent be-
havior of the curves in (a) and the large contribution of the off-
diagonal reHection coefficients to the total weak-localization
effect.

(bR~(B)) = 'R/[1+ ( 2B/a. , pIp) ]. (7)

We emphasize that this is obtained from the semiclas-
sically exact Eq. (5) using two controllable approxima-
tions, uniformity and the exponential area distribution.
Note that the field scale can be much smaller than gap

through the area of the cavity.
For a regular cavity, we estimate (bRD(B)) by using

the appropriate N(0, 8), following work in the energy-
time domain [6, 19]. For a fixed 8, we suppose that
the trajectories are ergodic in real space and therefore
that N(0, 8) is exponential as in the chaotic case. How-

ever, unlike the chaotic case, the rate of decay depends
strongly on 8 and may vanish. This rate of decay is pro-
portional to the square root of the typical escape rate p
[4, 14, 18], N(0, 8) oc exp[ —c~Oi gp(8)], so that the points
where p = 0 dominate the large 0 behavior. For the reg-
ular structure of Fig. 1, p vanishes linearly at 8 = +7r/2
as particles are injected close to a periodic orbit, and
Jd8N(0, 8) oc 1/02. Taking the Fourier transform, we

conclude that (bRD(B)) oc iBi for small FBI (The un-

physical cusp at B = 0 is caused by deviations from
1/O~ at very large 0 [6].) Thus, a qualitative difference
betrveen chaotic and regular cavities results from the dif
ferent classical distributions of effective areas

In Fig. 2 we compare the semiclassical predictions for
the chaotic case to numerical results. We calculate all the
R „and hence can extract R~ = Q R„„. The results
for the structure with the stopper are in accord with the
semiclassical theory: bRD is approximately independent
of k, its magnitude is within 30% of 'R, and the elastic
enhancement factor is 1.97+0.07 at B = 0 and 0.99+0.02
at B/a, ictip = 2. The some. what low magnitude of 6R~
may result from the difhculty in numerically achieving an
escape time much larger than the mixing time. Some net

variation as a function of k occurs in the structure with
direct transmission paths [Fig. 2(b)] as well as a smaller
total magnitude, indicating that short structure-specific
paths can have a large effect on G(B).

Figure 2 shows that there is a large change in the off-
diagonal terms of opposite sign to (bRii), a result not an-
ticipated by the semiclassical theory above. Thus weak
localization is not equivalent to the coherent backscatter-
ing (elastic enhancement) effect This dis. tinction does
not appear to have been appreciated in much of the lit-
erature [4, 5, ll, 17], including that on disordered sys-
tems [9]. The importance of off-diagonal contributions is
even more apparent for T since there are no time-reversal
symmetric paths in its semiclassical expression. For the
density of states of closed systems, Berry has shown that
ofF-diagonal terms must be included for very long paths,
paths longer than the inverse level spacing, while the DA
is sufficient at shorter scales [8]. ln our cavities, the path
length is limited by the dwell time which is much smaller
than the inverse level separation, so these off-diagonal
interference effects are not directly relevant to the devi-
ations from the DA that we see. Thus, while the DA is
adequate for the density of states at these relatively short
times [1,8], it is evidently inadequate for the magnitude
of transport quantities.

Despite this inaccuracy, the semiclassical theory pre-
sented here is successful in certain key respects. It shows
that reHection coeKcients are sensitive to B through
time-reversal symmetry, relates the field scale to the aver-
age area enclosed by classical paths, and explains the dif-
ference between chaotic and regular structures in terms
of the distribution of the classical area.

The semiclassical results suggest analyzing the numer-
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pling it to leads. For good coupling, the result implicit
in Ref. [20j is (bR) = 0.25 while the elastic enhancement
factor yields (bRLi) = 0.5 = 'R. This is consistent with
our findings and, because of the deviation from the DA,
shows that this RMT does include ofF-diagonal contribu-
tions.
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FIG. 3. Weak-localization magnitude as a function of
magnetic field for the six structures shown. The magnitude is
obtained from (T(k, B) —T(k, B = 0))z with kW/7r C [4, 11].
Note the difference between the chaotic and regular struc-
tures, as well as the sensitivity to symmetry in the lower
panel. a, i is the inverse of the typical area enclosed by clas-
sical paths.

ical data by averaging the change in T(k) as shown in
Fig. 3. The top panel demonstrates the difference be-
tween chaotic and. regular structures: The curves for
the half stadia (chaotic) fiatten out while that for the
half asymmetric square (regular) increases linearly (ex-
cept for very small B where it is quadratic). Not all of
our ch otic structures show a clear saturation; however,

all have rapidly changing magnetoconductance at small
field followed by a more gradual rise. We attribute this
deviation to the small size of our structures.

The lower panel of Fig. 3 shows a clear weak-local-
ization efFect for structures without stoppers. The error
bars are larger than in the upper panel because of the
greater variation with A: produced by the direct paths.
However, it is interesting, and important for experiments,
that the direct paths do not mask the weak-localization
efFect: The difFerence between the chaotic and regular
cavities is clear. The lower panel shows that a symmetric
stadium behaves difFerently from the asymmetrized cases:
G is nearly independent of B. The importance of spatial
symmetries in determining G(B), an irrelevant effect in
disordered systems, may be experimentally accessible in
the ballistic regime.

Finally, we note a connection between our results and
those of a random matrix theory (RMT) [20] based on
taking a Hamiltonian from a Gaussian ensemble and cou-

[1) For reviews see M. Gutzwilier, Chaos in Classical and
Quantum Mechanics (Springer-Verlag, New York, 1991);
Chaos and Quantum Physics, edited by M.-J. Giannoni,
A. Voros, and J. Zinn-Justin (North-Holland, New York,
1991).

[2] See, e.g. , E. H. Heller in Ref. [1], pp. 547—663.
[3] For a review of quantum chaotic scattering see U.

Smilansky in Ref. [1], pp. 371—441.
[4] E. Doron, U. Smilansky, and A. Frenkel, Physica (Ams-

terdam) 50D, 367 (1991).
[5] C. H. Lewenkopf and H. A. Weidenmiiller, Ann. Phys.

(N.Y.) 212, 53 (1991).
[6] Y.-C. Lai, R. Bliimel, E. Ott, and C. Grebogi, Phys. Rev.

Lett. 68, 3491 (1992).
[7] R. A. Jalabert, H. U. Baranger, and A. D. Stone, Phys.

Rev. Lett. 65, 2442 (1990).
[8] M. V. Berry, Proc. R. Soc. London A 400, 229 (1985).
[9) For reviews of weak localization in metals, see P. A.

Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287
(1985); G. Bergmann, Phys. Rep. 107, 1 (1984).

[10] C. M. Marcus, A. J. Rimberg, R. M. Westervelt, P. F.
Hopkins, and A. C. Gossard, Phys. Rev. Lett. 69, 506
(1992).

[ll] H. U. Baranger, D. P. DiVincenzo, R. A. Jalabert, and
A. D. Stone, Phys. Rev. B 44, 10637 (1991).

[12] R. B.S. Oakeshott and A. MacKinnon, Superlattices Mi-
crostruct. 11, 145 (1992).

[13] For reviews of classical chaotic scattering, see T. Tel,
in Direction in Chaos, edited by Hao Bai Lin (World
Scientific, Singapore, 1990), Vol. 3, pp. 149—211 and Ref.

[14] R. Jensen, Chaos 1, 101 (1991).
[15] W. H. Miller, Adv. Chem. Phys. 25, 69 (1974).
[16] It is important to average over an infinite window in k; we

use (A) = lim~ (1/q) f ' dk A(k) with q, W/vr )) 1.
[17] R. Bliimel and U. Smilansky, Phys. Rev. Lett. 69, 217

(1992).

[18] M. V. Berry and M. Robnik, J. Phys. A 19, 649 (1986).
[19] W. Bauer and G. F. Bertsch, Phys. Rev. Lett. 65, 2213

(1990).

[20] S. Iida, H. A. Weidenmiiller, and J. A. Zuk, Phys. Rev.
Lett. 64, 583 (1990); Ann. Phys. (N.Y.) 200, 219 (1990).

3879


