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Plateau Onset for Correlation Dimension: When Does it Occur?
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Chaotic experimental systems are often investigated using delay coordinates. Estimated values of the
correlation dimension in delay coordinate space typically increase with the number of delays and eventu-

ally reach a plateau (on which the dimension estimate is relatively constant) whose value is commonly
taken as an estimate of the correlation dimension D2 of the underlying chaotic attractor. We report a
rigorous result which implies that, for long enough data sets, the plateau begins when the number of de-

lay coordinates first exceeds D2. Numerical experiments are presented. We also discuss how lack of
sufficient data can produce results that seem to be inconsistent with the theoretical prediction.

PACS numbers: 05.45.+b

The estimation of the correlation dimension [1] of a
presumed chaotic time series has been widely used by
scientists to assess the nature of a variety of experimental
as well as model systems, ranging from simple circuits to
chemical reactions to the human brain. It is also known
that many factors, such as noise and a lack of data, can
hinder the successful apphcation of the dimension extrac-
tion algorithm. In this paper, we address two issues relat-
ed to the understanding of these difficulties, namely, what

happens in an ideal situation (i.e. , long data string with
low noise) and what could be expected when the data set
is small. In particular, we focus on the character of the
dependence of the estimated correlation dimension on the
dimension of the delay coordinate reconstruction space.

Consider an n-dimensional dynamical system that ex-
hibits a chaotic attractor. A correlation integral C(e) [1]
is defined to be the probability that a pair of points
chosen randomly on the attractor with respect to the nat-
ural measure p is separated by a distance less than e on
the attractor. The correlation dimension D2 [1] of the at-
tractor is then defined as D2=lim, ologC(e)/loge. As-
sume that we measure and record a trajectory of finite
duration L on the attractor at N equally spaced discrete
times, jxtjP-t, where x; E R". The correlation integral
C(e) is then approximated by

N N

C(N, e) = g g e(e —lx; —x, I), (I)
N(N —1) J t t J+t

where e(x) =1 for x & 0 and e(x) =0 for x ~ 0. In the
limit L,N ~, C(N, e) C(e).

The dynamical information of a chaotic experimenta1
system is often contained in a time series, [y; y(t )];=t,
obtained by measuring a single scalar function y =h(x)
where x C R" is the original phase space variable. From
[y;];-t one reconstructs an m-dimensional vector y; using
the delay coordinates [2,3]

y; = Iy (t; ),y (t; —T), . . . , y (t; —(m —1)T)],

where T & 0 is the delay time and m is the dimension of
the reconstruction space. We call the mapping from [x;]
in R" to [yt] in R the "delay coordinate map. " Results
in Ref. [4) show that, for typical T & 0 and m & 2Dp, this

delay coordinate map is one to one. Here Do is the box-
counting dimension of the original chaotic attractor.

Our main focus is to estimate correlation dimension
from a time series using delay coordinates [Eq. (2)]. As
a point of departure for subsequent discussions, we first

report a theorem [5,61 which shows that, for estimating
the correlation dimension, m ~ D2 suffices. We em-

phasize that this result holds true irrespective of whether
the delay coordinate map is one to one or not. This is

contrary to the commonly accepted notion that an

embedding (one to one and difl'erentiable) is needed for
dimension estimation, leading to the false surmise that m

needs to be at least 2D2+1 to guarantee a correct dimen-
sion estimation (see [7] for further discussion).

Consider an n-dimensional map G:R" R". Let 4 be
an attractor of G in R" with a natural probability mea-
sure p. For a function h: R" R, define a delay coordi-
nate map Fg. R" R as

Ft, (x) =[h(x),h(G '(x)), . . . , h(G ' (x))].
The projected image of the attractor A under Fp has an
induced natural probability measure Fh (p) in R
Furthermore, assume that G has only a finite number of
periodic points of period less than or equal to m in A.
The following result then applies.

Theorem. —If D2(p) ~ m, then for almost every h,
D2(Ft, (p) ) =D2(p).

The theorem says that the correlation dimension is

preserved under the delay coordinate map with m
~ D2(p). Similar results hold for flows generated by or-
dinary diAerential equations. "Almost every" in the
statement is understood in the sense of prevalence defined
in Ref. [4]; roughly speaking, we can regard this "almost
every" as meaning that the functions h that do not give
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the stated result are very scarce and are not expected to
occur in practice. The above dimension preservation re-
sult also holds for almost all general projection maps
meeting the condition in the theorem. To illustrate, con-
sider a closed curve with a uniform measure in R . The
dimension of this curve is 1. The projected image of this
curve onto the plane still has a dimension of 1 but is gen-
erally self-intersecting. Thus the map is not one to one
but preserves dimension information. One can further
project the image to R and obtain an interval, which
again has a dimension of 1 but bears little resemblance to
the original curve in R .

In applications D2 is commonly extracted from a time
series as follows (see Refs. [8-11] for reviews). First, an
m-dimensional trajectory is constructed using Eq. (2).
Then, the correlation integral C~(N, e) is computed ac-
cording to Eq. (1), where m indicates the dimensionality
of the reconstruction space. From the curve logC (N, e)
vs loge one then locates a linear scaling region for small e
and estimates the slope of the curve over the linear re-
gion. This slope, denoted D2™,is then taken as an esti-
mate of the correlation dimension D2 of the projection
of the attractor to the m-dimensional reconstruction
space. If these estimates D2, plotted as a function of
m, appear to reach a plateau for a range of large enough
m values, then we denote the plateaued value D2 and take
D2 an estimate of the true correlation dimension D2 for
the system. From the theorem it is clear that the on-
set of this plateau should ideally start at m =Ceil(D2),

where Ceil(D2), standing for ceiling of D2, denotes the
smallest integer greater than or equal to D2.

Our original interest in the current problem was
motivated by published reports (see Refs. [12-171 for a
sample) where D2™plateaus at m values that are consid-
erably greater than D2. A particular concern is that,
when this happens, what does it imply regarding the
correctness of the assertion that D2 is an estimate of the
true correlation dimension D2 of the underlying chaotic
process? In an attempt to answer this question we have
obtained new results on the systematic behavior of the
correlation integrals. Based on these behaviors we are
able to explain how factors such as a lack of sufficient
data can produce results, resembling those seen in the ex-
perimental reports cited above, which seem to be incon-
sistent with the theorem. Furthermore, we find that even
in cases where the plateau onset of D2 occurs at m
values considerably greater than Ceil(D2), there are situ-
ations where the plateaued D2 is a good estimate of the
true correlation dimension D2. See Refs. [18-25] for
other relevant works addressing the issue of short data
sets and noise.

To study the numerical aspects of dimension estimation
we use chaotic time series generated by the Mackey-
Glass equation [26] dy (t)/dt =ay (t z)/I 1 + [—y (t
—z)]'j —by(t), where we fix a =0.2, b =0.1, c =10.0,
and z =100.0, and take as the initial condition y(t) =0.5
for t C [—z, 0]. The numerical integration of this equa-
tion is done by the following iterative scheme [1]:

( + )
2 —bbt

( )
8t ay(t —z) ay(t —z+6t)

2+b~r 2+b~r 1+[y(t —z)] ' 1+ [y(r —z+Bt)] '

where Bt is the integration step size. We choose 6't =0.1.
Equation (3) is then a 1000-dimensional map, which,
aside from being an approximation to the original equa-
tion, is itself a dynamical system. The time series, gen-
erated with a sampling time t, =10.0, are normalized to
the unit interval so that the reconstructed attractor lies in

the unit hypercube in the reconstruction space. The norm
we use to calculate distances in Eq. (1) is the max-norm
in which the distance between two points is the largest of
all the component diff'erences. To reconstruct the attrac-
tor, we follow Eq. (2) and take the delay time to be
T=20.0 The dimension of the reconstruction space is
varied from m =2 to m =25.

The first time series, used to illustrate the theorem,
consists of 50000 points. For each reconstructed attrac-
tor at a given m we calculate the correlation integral
C (N, c) according to Eq. (1). In Fig. 1 we display
log2C (N, e) vs log2e for m =2-8, 11, 15, 19, 23. For
each m we identify a scaling region for small t. and fit a
straight line through the region. The open circles in Fig.
2 show the values of D2™so estimated as a function of
m. For m ~ 7, D2 =m. For m ~ 8, D2 plateaus at
D2 which has a value of about 7.1. Identifying D2 with
the true correlation dimension D2 of the underlying at-
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FIG. 1. Log-log plots of the correlation integrals C (N, e)
for the data set of 50000 points generated by Eq. (3).

tractor, this result is consistent with the prediction by the
theorem that the onset of the plateau occurs at
m =Ceil(D2).

The second time series, used to illustrate the effect
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FIG. 2. D2™vs m plotted as open circles for the long data

set (N =50000 and Fig. 1), D2 vs m plotted as triangles for
the short data set (N =2000 and Fig. 3).
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FIG. 3. log2C (N, e) vs log2e for the data set of 2000 points.

due to a lack of data, consists of 2000 points. The
log2C (N, e) vs log2e curves are shown in Fig. 3 for
m =2-6, 8, 11,15, 19, 23. The values of D2 in this case
are plotted using triangles as a function of m in Fig. 2.
This function attains an approximate plateau which be-
gins at m =16 and extends beyond m =25. The slope
averaged over the plateau is about 7.05 which is con-
sistent with the value of 7. 1 obtained using the long data
set (N =50000) plotted as open circles in Fig. 2. But the
D2 estimates for the short data set fall systematically un-
der that for the long data set for 5 ~ m ~ 13. Thus the
plateau does not begin until rn is substantially larger than
Ceil(D2). This behavior has also been seen in many ex-
perimental studies. In what follows we explain the origin
of this apparent inconsistency by exploring the systematic
behavior of correlation integrals.

Figure 4 is a schematic diagram of a set of correlation
integrals for m =2 to m =13. A dashed line is fit through
the scaling re ion for each m. For m ~ 5, D2 =m.
For m ~ 6, D2 plateaus at D2= 5.7. This value is an
estimate of the true D2 for the system. This figure exhib-
its several features that are typical of correlation inte-
grals for chaotic systems. The first feature we note is
that the horizontal distance between logC (N, e) and
logC +~ (N, e) for m ~ 6 in the scaling regions is roughly
a constant. This constant is predicted, for large m and
small e, to be Ah =d, v/D2, where Av =TK2 with Kq the
correlation entropy [27] and T the delay time in Eq. (2).
Two other significant features exhibited by Fig. 4 are as
follows. For m ~ 9, log2C (N, e) increases with a gradu-
ally diminishing slope; awhile for m ~ 11, after exiting the
linear region, the log-log plots in Fig. 4 first increase with
a slope that is steeper than that in the linear scaling re-
gion and then level off to meet the point (0,0). These two
difierent trends give rise to an uneven distribution in the
extent of the scaling regions for diAerent m with the most
extended scaling region occurring at m =10.

In Refs. [8,28] arguments are presented to show that
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FIG. 4. Schematic diagram of correlation integrals.

the trend observed for relatively small m is due to an
"edge eA'ect" resulting from the finite extent to the recon-
structed attractor. Ding et al. [5] show that the steeper
slope observed for relatively large m is caused by foldings
occurring on the original attractor. This can be illustrat-
ed analytically [5] for the tent map [29]. For m = I, the
correlation integral for the reconstructed tent map attrac-
tor is C~(e) =e(2 —e). For m =2, Cz(e) is written as
C2(e) =C~(e/2)+R(e). The first term arises because a
pair of points y~ and yI in the time series satisfying
~y~.

—
yt ~

& e/2 give rise to a pair of two-dimensional
points, y~+ ~

= [yt~ ~,yt] and yt+~ = [yt+ ~,yt], satisfying

~y~+~
—

yt+~~ & e. The folding of the tent map at y = —,
'

leads to situations in which ~y~
—

yt~ & e/2, but ~yj+~—
yt+~~ & e. Thus the folding in the attractor underlies

the correction term R(e) which is calculated [5] to be
R(e) =e /2 for 0~ e & 3 and R(e) =3e —7e /4 —

1 for

3
~ e~ 1. For 0~ e & —', , dlog2Cq(e)/dlog2e=1+e/

(2+e). This derivative is I when e=0 (D2=1 for the at-
tractor) and increases due to the term e/(2+e) whose
presence reflects the influence of R(e) which, in turn, is

caused by the folding on the attractor.
From Eq. (I), the range of C (N, e) is logz2/N
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~logzC~(N, e) ~0. Imagine a time series of N=2000
points generated by the system underlying Fig. 4. The
plots of logzC (N, e) vs [ogive for this data set roughly
correspond to the portion of Fig. 4 above the horizontal
line drawn at [ogzC (N, e) =log2[2/(2000) ] = —20.
Since the upper boundary points of the scaling regions for
m =6 and 7 are under this horizontal line, the correct di-
mension is not obtained for m =6 and 7. In fact, if we fit
a straight line to an apparent linear region above
logzC (N, e) = —20 for m =6 we obtain a slope which is
markedly smaller than the actual dimension. However,
since the upper boundary points of the scaling regions for
m ~ 8 are above the horizontal line, we can still expect to
obtain the correct estimate of D2=5.7 for m ~ 8. Thus
the plateau onset is delayed due to a lack of data.

The same consideration applies to the short data set
generated by Eq. (3). In particular, imagine that we re-
strict our attention to the region [ogzC (N, e) & —20 in

Fig. 1 and fit a line through an apparent linear range for
the m =8 data in this region. The slope of this straight
line is about 5.9, which is roughly the same as that of 5.8
estimated using 2000 points. Thus, by knowing the corre-
lation integrals for a large data set, we can roughly pre-
dict the outcome of a dimension measurement based on a
smaller subset of this data.

We remark that if one extends the range of m values
beyond what is shown in Fig. 2, at large enough m, D2
will start to deviate from the plateau behavior and in-
crease monotonically with m. This is caused by the finite
length of the data set and can be understood from the
systematic behavior of correlation integrals seen in Fig. 4.
A lack of sufficient data will not only delay the plateau
onset, but also make the deviation from the plateau be-
havior occur at smaller values of m, thus shortening the
plateau length from both sides. This can again be under-
stood with reference to Fig. 4.
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