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Spatial Structure of a Squeezed Vacuum
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%e analyze the quantum properties of the single near field emitted by a degenerate parametric oscilla-
tor below threshold, including diAraction and its eAects on the threshold for signal generation. The field
is probed by a local oscillator field of arbitrary spatial configuration. The results are expressed in terms
of an appropriate spectrum which describes how the level of squeezing varies with the angle from the
direction of propagation. The results hold for cavities both with plane and with spherical mirrors.

PACS numbers: 42.50.DV, 42.65.—k

The concept of the squeezed vacuum plays a key role in

the field of squeezing, i.e., of the states of the electromag-
netic field which present, for the appropriate observables,
a level of quantum noise reduced with respect to coherent
states. However, the issue of the spatial structure of
squeezed vacuum states has not yet been elucidated,
mainly because it requires one to combine the field of
squeezed states [1] with that of transverse optical pat-
terns [2].

As a matter of fact, the theoretical analyses of
squeezed states generation have been performed usually
in the plane wave approximation. The exceptions are re-
markable but still quite limited in number. Kobolov and
Sokolov [3] analyzed the spatiotemporal correlations in

the homodyne detection of the field generated by an opti-
cal parametric amplifier, and discovered the possibility of
photon counting statistics regular not only in time but
also in space. La Porta and Slusher [4] studied a para-
metric amplifier pumped by a Gaussian beam, and pre-
dicted limits in the degree of squeezing that arise from
spatial distortion of the signal beam. Castelli and one of
us [5] considered the quantum properties of the optical
spatial patterns which arise spontaneously from diA'rac-

tion when a Kerr medium contained in a resonant cavity
with plane mirrors is driven by a plane wave field, and
predicted quantum noise reduction in the intensity dif-
ference between the two signal beams which represent the
far field configuration of the near field stripe pattern.

In this paper we consider the simplest model of a de-
generate optical parametric oscillator (OPO) which in-
cludes diff'raction and, by introducing appropriate con-
cepts, we provide a description of the spatial structure of
the squeezed vacuum state in the near field emitted by
this system [1,6]. We derive the formulas which express
the quantum Auctuations of the field detected in a bal-
anced homodyne scheme, with a local oscillator field
(LOF) of arbitrary spatial configuration. Our results are
affected by the instability which gives rise to signal gen-
eration. For the appropriate sign of the detuning param-
eter, the instability threshold is lower for off-axis emission
than for axial emission [7]; in this case the signal beam
above threshold corresponds to a spatial pattern instead
of a plane wave [7].

In this work, however, we consider only the OPO below
threshold, in the approximation in which the complete
quantum model (including both signal and pump fields) is
linearized around the semiclassical stationary solution.
In this case, the complete model reduces to a simpler
quantum model which involves only the signal field, while
the pump field appears only as a classical quantity equal
to the stationary semiclassical value.

In the first part of the work we assume that the reso-
nant cavity which contains the nonlinear crystal has plane
mirrors. In addition, the coherent driving pump field in-
jected into the cavity has a plane wave structure. We as-
sume conditions such that only one longitudinal mode of
the cavity is relevant. In order to avoid di%culties arising
from a continuum of transverse modes, we consider in the
transverse plane (x,y) a square of side b and we assume
periodic conditions for the field. Hence the field envelope
operator for the field can be expanded in terms of an
orthonormal basis as follows:

A(x,y) = g ga„~f„(x,y),i=i, 2 n
(1a)

cos(k, .x), for i =1,
sin(k„. x), for i =2, (lb)

where x(x,y), k„=2xn/b, n=(n„nJ), n, =0, 1,2, . . . ,

n~ =0, + 1, ~ 2, . . . , s„=(1—8„,o6„,0)/2, and the oper-
ators a«, a„; obey the commutation rule [a„;,a„; ]
=6„„6;;.In the case n~ =ny =0 only the option i = l is
possible.

In the paraxial approximation, in which the transverse
components kpz key of the wave vector are much smaller
than the longitudinal component k„ the frequency of the
mode k„ is given by

ck
haik =F00+, k = ~k„~,2k, '

where coo is the frequency of the axial mode n =(0,0).
The k-dependent contribution in Eq. (2) originates from
the transverse Laplacian, which describes diffraction and
governs the spatial effects in nonlinear optical systems
[2].

The model is formulated in terms of a master equation
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for the density operator p of the multimode system. By
adopting the picture in which the frequency co, of the sig-
nal field is eliminated, the master equation reads

dp gA„;p ——[Hn+ H;„t,p],1

dt i=],2 n

(cAvi Tv)

B2

Bt

where the Liouvillian Ani is given by

Anip=ys[[anip, ant ]+[a tn, pant]] (4)

and y, is the cavity damping rate of the signal field. We
have, furthermore,

H0 Z Z yskpaniani r

i 1,2n

Qp r b/2 t b/2
H;„,=i 6 dx dy [[A t(x,y ) l ' —A '(x,y )]

(s)

y, 'a„;= —(I +i ht, )a„+A pa„*;,

ys ag(' = (1 ikey )ant+ Apan;,

(7a)

(7b)

where Ap=Ap/y, . The stationary solution a„;=0 be-
comes unstable beyond the threshold for signal genera-
tion, and the instability is indicated by the fact that some
solutions of Eqs. (7a) and (7b) for at least one choice of
the indices n and i diverge for t ~. As shown in [7]
the instability threshold corresponds to the case Ap=1
+BI„where h, A indicates the minimum value of hk when2 2 2

k is varied from 0 to ~. Using Eq. (2), one sees that
when ho ——hk=p~ 0, the instability arises in the axial
mode n = (0,0) for Ap = 1+Att, whereas when An ~ 0 the
instability arises in the oA'-axial modes with modulus of
the transverse wave vector k, = ( —2k, y, An/c) '/ for
Ap =1.2

In this paper we analyze the quantum properties of the
near geld, immediately out of the cavity. In a balanced
homodyne detection scheme (Fig. 1) one observes (see,
e.g. , [4,8]) the diA'erence between the intensities of the
two fields Bt =( /JI2)[ A( ,x)yi+a (L,x)y]and B2=(i/
J2)[A(x,y) —iaL(x, y)], where aL(x,y) is the ampli-
tude of the coherent LOF, which has the same frequency
of the signal field. The intensity diA'erence corresponds to
N' EH where

EH =i (AH —AH ) ~ AH =GL [A l,
b/2 b/2

dx dy )aL (x,y) )2;

=ih g g[(at; )' —(a„';)], (6)
i 1,2 n

where Ap =(cok —co, ) y,
' and Ap is the amplitude of the

plane wave pump field (taken real and positive for
definiteness) multiplied by the coupling constant of the
interaction. Thus, the model describes the dynamics of
infinite, independent, single-mode degenerate OPO's.

The semiclassical equations for the c-number quantities
e» and ant; which correspond to the operators a„; and an~;,

respectively, read

FIG. 1. Balanced hornodyne detection scheme. The mirror
M has transmission and reliection coeScients t =1/J2 and
r =i/W2, respectively.

here and in the following we indicate by GL the operation
GL[f] =N ' 'f'~by/2f"b/, dxdy at*. (x,y)f(x, y). Hence
the homodyne detection operates the projection GL of the
field 2 onto the local oscillator field and selects its quad-
rature component EH.

By taking into account that [A(x,y), At(x', y')] =8(x
—x')8(y —y') one has that [AH, AH] =1. Possibly, the
function at. (x,y) may also take into account the precise
shape of the detected region.

In the observation of squeezing one measures the spec-
trum of the Auctuations of the homodyne field, which is
given by [9]

S(to) =9„[(:8EH(t)8EH(0):)l, (9)

pni exp( t&ni ) =Gt[fni l . . (1Oc)

The expressions (10) are general and hold whenever the
field has the form (1). In the specific case of the model
(3) we can take advantage of the fact that the various
single-mode degenerate OPOs are independent of one
another, i.e., the time correlation function (loa) vanishes
unless n =n' and i =i'. Thus we obtain

S(co) = g gp2;S„(k, co),
i 1,2 n

s„,(k, ~) =v„[(:~A.;(t)~A„;(o):)].

(1 la)

(1 1 b)

It is easy to verify that p;-i 2+np„; =1. Hence the spec-
trum S(co) is expressed as a combination of spectra (1 lb)
for the individual single-mode degenerate OPOs. These
spectra are well known and, indicating to=co/y„read
[10] as

where 7„[g(t)] indicates the operation 2y, f+dt-
&&exp( —itot)g(t), ::means normal and time ordering, ( )

denotes the mean value in the stationary state, and
SEtt =EH —(EH). With this definition the shot noise lev-

el corresponds to S =0, and S(to) = —
1 corresponds to

complete suppression of quantum noise at frequency m.

By using Eqs. (8) and (1), we obtain

S(~) = g g p„p„;V„f(:SA.;(t)SA. , (0):)], (IOa)
i,i' =1,2 n, n'

Ani t [ani exp(i&pnt ) —a„exp( —ivy« )], .
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1/2
1 pt

(2"'~w) '"fpt; (r, v ) =

(1) The Rayleigh range of the cavity for the signal field is much larger than the length of the crystal, so that the
transverse structure of the Gauss-Laguerre orthonormal modes is given by [12]

cos(l&p), for i =1,
(is)

i

where p, l =0, 1,2, . . . , i =1,2, r, and p denote the radial
and the angular variables in the transverse plane, w is the
beam waist, and Lp are the Laguerre polynomials of the
indicated indices.

(2) The cavity mirrors are completely transmitting for
the pump field, which therefore can be assumed again to
have a plane wave configuration.

Under such conditions, the field can be expanded as
follows:

W(x,y)= g g ap(;fp(;(r, v ), (i6)
i 12pl 0

with [apt&, ap't't ] =Bp,p&t, t6;.; The .mode frequencies are
given by

copt =coon+ (2p+1 )(, (2')

where the parameter g depends on the mirrors' separation
and radius of curvature. Equations (3)-(6) remain un-

changed provided that the index n is replaced by pl, mp by
tooo, and ck /2k, is substituted by (2p+l)g.

By defining the detuning parameter dpt(topt —co, ) y,
one finds again that for happ~ 0 the instability arises in

the fundamental mode p =l =0 for Ap =1+hpp, ' for
600&0 it arises in the higher order modes such that
(2p+l)(y, ' = —Aoo for Ap =1. The spectrum of the in-

tensity Auctuations of the homodyne near field is given by

where

Z Z ppti ~pli (co),
i 12p I 0

(17)

f+ OO 2K

ppt; exp(ippt; ) =N ' r dr dp fpt; (r, p) at*. (r, p)

(18)

and Spt;(co) is given by Eq. (12) after replacement of Ak

by ~pl and ~ni by +pli ~

The results of (17) and (18) are independent of the po-
sition on the longitudinal axis z where the homodyne
detection takes place, because the Gauss-Laguerre modes
vary with z in the known way and remain orthonormal
[»].

In this way, with the exception of the passage to the
continuum, the previous results have been generalized to
the case of a cavity with spherical mirrors, which lends it-
self to an experimental observation of the spatial struc-
ture of the squeezed vacuum, predicted in this paper.
The discussion of the elements which can degrade the lev-
el of squeezing in an experiment is beyond the scope of
this paper.

Central to our analysis is the idea of using a LOI with

L arbitrary spatial configuration to explore the spatial prop-
erties of the squeezed states. If the LOF has a TEMpp
structure the squeezing coincides with that predicted by
the plane wave theory [10]. If, instead, the LOF has the
configuration of a higher order mode, the level of squeez-
ing changes because one probes diff'erent directions in the
emission. When the detuning parameter App is negative
the squeezing is largest in some appropriate off-axial
directions, as shown in Figs. 2(b) and (3).
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