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A neutral beam of oriented CHiCl molecules in the ~111) rotational eigenstate is crossed with a 700-
eV beam of electrons inside a uniform electrostatic field of about 20 V/cm. Ions formed directly upon

impact are collected by the uniform field electrodes, but some CH3Cl+ ions are observed in a mass spec-
trometer with its ionizer turned off'. These "indirect" CH3C1+ ions are forward scattered, undeAected by
the uniform field, and must therefore be neutral during the Aight out of the uniform fieM. This strongly

suggests that the precursor of these ions is a highly excited long-lived molecule, CH3C1**. The "in-
direct" CH3C1+ ion signal is greater when the electron attacks at the Cl end of the molecule.

PACS numbers: 34.50.Gb, 34.80.Gs, 82.30.—b

Considerable attention has been directed recently to
studies of steric effects on reaction dynamics [1,2]. In

photoionization, Kaesdorf, Schonhense, and Heinzmann
have observed the stereoanisotropic ejection of photoelec-
trons from oriented CH3I molecules [3]. In collisional
ionization of fast K atoms with oriented CH3I and CF3I
molecules, the formation of K+ ions was enhanced when

the K atom attacked at the I end [4]. A question arising
from these studies is whether or not the electron attack
leading to the reaction is dependent on the orientation of
the target molecule.

Although elastic scattering of fast electrons with

oriented CH3I has been reported [5], no studies have

been reported on reactive processes of electrons with

oriented molecules. The basic difticulties with experi-
ments involving charged particles are the unavoidable
electrostatic interferences from the orienting field. The
primary electron beam can be disturbed by the orienting
field and any product ions are easily collected by the field

[6]. For this latter reason, it is difficult to investigate
steric eA'ects of the direct process of ionization, but it

might be possible to investigate indirect processes of ion-

ization, in which excited neutral species are expected to
be produced in the collision. This study aims at experi-
mental clarification of steric eAects on such indirect pro-
cesses of ionization using oriented molecules.

Figure 1 illustrates the experimental apparatus em-

ployed in this study of the impact of electrons with orient-
ed CH3C1 molecules. The formation of the oriented mol-

ecules is described in detail elsewhere [7]. Briefiy, a 3-ms

pulsed beam of 1% CH3C1 seeded with helium emerges
from a supersonic pulse valve (A) at 850 Torr. The ~111)
eigenstate of the CH3C1 molecule was selected and fo-
cused by a 2-m electrostatic hexapole field (C) with rod
voltage Vo=5 kV. Here (111) is a set of symmetric top
quantum numbers J, K, and M [8]. The 50-cm guiding
field (D) provides an adiabatic transition from the hexa-
pole field to the orienting field (E). The molecules are
finally oriented in this orienting field, with electrons im-

pacting on either the Cl end or the CH3 end of the mole-

cule. Random orientation of the molecules is achieved by
reducing the field strength in the guiding field. The elec-
tron beam (e beam), with a nominal energy of 700 eV, a
40-mm-diam beam width, and total current of ca. 50
pA, was monitored 30 cm downstream on a phosphores-
cent screen (F).

The beam intensity of the primary CH3C1 beam was
measured with the mass spectrometer (G) tuned to the
CH3C1+ peak. The result is shown as the shaded area in

Fig. 2, where the resolved peak in the focusing curve is

due to the ~111) state of CH3C1 [7]. In these measure-
ments, the molecules were ionized by electron bombard-
ment in the mass spectrometer ionizer. The e beam was
not running under these conditions.
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FIG. 1. Schematic view of the apparatus for electron impact
with the oriented molecule. 2, pulsed valve for CH3C1; B, beam
stop; C, electrostatic hexapole field; D, guiding field; F., electron
gun; F, phosphorescent screen; G, quadrupole mass spectrome-
ter; H, orienting field; I, field uniformers; J, electron beam
detectors.
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FIG. 2. Focusing curve of the primary CH3C1 beam shown
as the shaded area. The entrance slit of the mass filter was 1.4
mm. Vo dependence of the CH3C1+ yield at 0=0: The circles
and triangles represent the crossed beam signals of CH3C1+ for
a typical two runs with the e beam and without mass spectrom-
eter ionizer. The entrance slit of the mass spectrometer was 4
mm.
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FIG. 3. Angular distributions of CH3C1+ measured with and
without retarding potential of the mass spectrometer to reject
incoming ions. The angular distribution of the primary CH3C1
beam is shown for comparison.

CH3C1+ ions are also detected with the e beam on and
the mass spectrometer ionizer oK Ions formed directly in

the molecule-electron collision are collected on the uni-

form field electrodes (H), so that these "indirect" ions
must arise from neutral precursors. The indirect ion sig-
nals depend linearly on the CH3C1 beam intensity as
shown by the circles (run 1) and triangles (run 2) in Fig.
2. Although the intensity of the crossed beam signals was
much smaller than the original focusing curve, the nor-
malized points of the crossed beam signals agree nicely
with the focusing curve.

Figure 3 shows the angular distributions of the indirect
ions. These crossed beam signals were observed by the
mass spectrometer without the ionizer. A fine-mesh re-
tarding electrode biased at +13 V to repel ions was

placed at the entrance of the mass spectrometer. This re-
tarding electrode biased was turned oA' and on in order to
determine if the indirect ions were ions prior to entering
the mass spectrometer. The angular distribution marked
"with" in the figure was obtained with the retarding elec-
trode to repel ions, and the distribution labeled "without"
was obtained with the electrode grounded. The angular
distribution of the primary CH3C1 beam (obtained with

the e beam off and the mass spectrometer ionizer on) is

shown for comparison. The angular distributions of the
indirect ions with and without the retarding electrode
give the same pattern of forward scattering which is al-
most identical (after normalization) to the distribution of
the primary CH3C1 beam. It is thus concluded that the
indirect ions, which are detached in the mass spectrome-
ter as CH3Cl+, enter the mass spectrometer as neutral
species of mass equal to that of CH3C1 and with an angu-
lar distribution essentially the same as the primary
molecular beam. These neutral species are formed in the
e-beam-molecular-beam collision zone and must have a
relatively long lifetime (= 60 ps) to reach the detector as

neutrals. This neutral product must be excited to ionize
in the mass spectrometer in the absence of the mass spec-
trometer ionizer. A highly excited long-lived CH3CI
could be a precursor to the CH3C1+ ion and is referred to
as CH3C1** hereafter.

The CH3C1 beam is seeded in He, and metastable He*
can be formed in the e beam collision, travel with the pri-
mary beam into the mass spectrometer, and then produce
CH3Cl+ by Penning ionization. This possibility can be
ruled out due to the fact that CH3C1+ was observed even
with pure CH3Cl beams containing no He [9]. Secon-
dary electrons, which are accidentally produced by the
primary electron beam at electrode surfaces, might pro-
duce CH3C1 *, although it was found that indirect ions
were observed only when the e beam and the molecular
beam cross one another perfectly in the orienting field.
The indirect ions are thus formed in the e-beam-
molecular-beam collision zone.

Figure 4 shows the effect of molecular orientation on
the angular distributions of indirect CH3C1 . The orien-
tation can be changed for these state-selected molecules
by reversing the polarity of the uniform field: For posi-
tive polarity of the orienting field, the electron is incident
on the Cl end of the molecule, and for negative polarity,
the electron is incident on the CH3 end. Each point rep-
resents the crossed beam signal count accumulated for
3600 molecular beam pulses. These distributions all show
forward scattering similar to that of Fig. 3. The form of
the angular distribution of the indirect ions is thus in-
dependent not only of the strength of the uniform field E
but also its polarity, and again it shows that the precur-
sors to the indirect ions must be neutral CH3C1 *.

The lifetime of CH3Cl * observed here is estimated to
be longer than =60 ps. Lifetimes of typical high-Ryd-
berg molecules are known to be much shorter [101. But
recently, Tarr, Schiavone, and Freund have observed
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FIG. 4. Angular distributions of CH3C
~ ~ ~ Cl+ as functions of the

strength of the orienting e anfi Id and its polarity which determines
the molecular orientation on electron impact.
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FIG. 5. E dependencies of 1$ for the Cl-e1-end and I- for the
CH3-end orientations.

I (E) =I—(E,on)/I —(E,off), (2)

I (E) =I (E,on)/I (E,off);
for negative polarity of the orienting field
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tant from the theoretical and experimental points of view
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