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Coulomb Sum and Proton-Proton Correlations in Few-Body Nuclei
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For simple models of the nuclear charge operator, measurements of the Coulomb sum and the
charge form factor of a nucleus directly determine the proton-proton correlations. We examine
experimental results obtained for few-body nuclei at Bates and Saclay using models of the charge
operator that include both one- and two-body terms. Previous analyses using one-body terms only
have failed to reproduce the experimental results. However, we find that the same operators which
have been used to successfully describe the charge form factors also produce substantial agreement
with measurements of the Coulomb sum.
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The two-body distribution function is a fundamental
property of any strongly interacting many-body system.
In quantum liquids it is extracted from neutron scat-
tering data. In nuclear physics it has long been known
that the integrated strength of the longitudinal response
function measured in inclusive electron scattering (the
Coulomb sum rule) is related to the Fourier transform of
the proton-proton distribution function (PPDF) in the
nuclear ground state [1]. A crucial assumption in obtain-
ing this relation is that the nuclear charge distribution
arises solely from the protons. As the PPDF is sensi-
tive to the short-range proton-proton correlations, its ex-
perimental determination can provide direct information
on both the strength of the correlations in the nuclear
medium and the size of the repulsive core in the nucleon-
nucleon interaction.

Beck [2] has recently obtained an experimental PPDF
from the Bates [3] and Saclay [4] longitudinal data on
3He. His analysis has shown that a large discrepancy
exists between the experimental PPDF and that calcu-
lated [5] from an essentially exact Faddeev wave func-
tion [6] corresponding to a realistic Hamiltonian with
the Argonne vt4 two-nucleon [7] and Ilrbana VII three-
nucleon [8] interaction models. Specifically, he found that
the experimental PPDF has a zero at lower momentum
transfer and a far greater magnitude in the region of the
second maximum than the calculated PPDF. It is im-
portant to point out that Faddeev calculations based on
diferent realistic two-nucleon interactions all give very
similar results, as reported by Doyle, Goulard, and Cory
[9]. Beck's analysis implies that the experimental PPDF
is smaller at short distances than the calculated PPDF,
thus suggesting that the proton-proton interaction has a
stronger repulsion than present models would indicate.

In this Letter we analyze the longitudinal response
data on sH, sHe, and He obtained at Bates [3,10] and

on sHe and He obtained at Saclay [4,11]. The Coulomb
sum is defined as

OO

Sl, (k) =—
~+

Rl, (k, io)

[G~ p(k, u))]z

where k and a are the momentum and energy transfers,
Rl. (k, cu) is the longitudinal response, G@„ is the proton
electric form factor (the Hohler parametrization [12] is

used in the present work), and ~o,i is the energy of the
recoiling A-nucleon system with Z protons. It can be
expressed as

sl. (k) = g(olp'L, (k)p, (k) lo) —
g l(olpl (k) lo) I

I+I-(k) I'=""'"' '«-. (k, -. )]
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where Io) is the ground state of the nucleus, FL, (k) is the
charge form factor normalized as I"I,(k = 0) = 1, and
a longitudinal-longitudinal distribution function (LLDF)
has been defined as

1
p«(k) —= g

"(o
I p~(k)pi(k) I o) —1 .

In this work we assume that the nuclear charge operator
pL(k) consists of one- and two-body parts,

pl. (k) = pl. i(k) + p1. 2(k) (4)

W

pl. , t(k) = ) e'"' ' 2C, —i z Y,'k (cr, x p, )
i=1 A)

(5)

The one-body part includes, in addition to the domi-
nant proton contribution, the neutron contribution and
the Darwin-Foldy and spin-orbit relativistic corrections
to the single-nucleon charge operator
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where k2—:k2 —(k /2m) is the four-momentum transfer
corresponding to the quasielastic peak, and G@„,GM „,
and GM „are the neutron electric, neutron magnetic, and
proton magnetic form factors, respectively, evaluated at
k . The Darwin-Foldy correction is taken into account
by the factor 1/(1+ k2/4m2) & as suggested by Friar [13).
This term is consistent with the correction of de Forest
[14] included by Beck in his analysis and agrees with the
prescription of Donnelly, Kronenberg, and Van Orden
[15] within less than 1% at the highest momenta consid-

ered here. Note that because of the definition of SI, in
Eq. (1), the charge operator in Eq. (4) is divided by Gz „.

The two-body part contains contributions associated
with pion, p- and w-meson exchanges, and the perp and
uxp mechanisms [16]. In the momentum transfer range
of interest (k & 600 MeV/c) the pion term is by far the
most important. For example, the contributions to the
A = 3 and 4 charge form factors of the vector meson
terms are at least j. order of magnitude smaller. The
pion term is given by

pL, (k) = 3i ) I-(~. )
i&j=1,A

Fs(k~)
G@,„(k2)

F"(k )
G@„(k~)

(8)

(9)

I (~) = —
l l (1+m. ~)e ." —(1+A.r)e A-"-(f21

3m'r' q4~p

2

(A „)2
qA ) (10)

where m and f are the pion mass and the 7rNN cou-
pling constant, respectively, with f2/4vr = 0.081. The
form factor at the 7rNN vertex A is chosen to be large
(A = 2 GeV), as suggested by an analysis of the pseu-
dosealar component of the Argonne vq4 interaction [17].
F& and F&" are the Dirac isoscalar and isovector nucleon
form factors. The charge operator given in Eq. (4) gives
an excellent description of the charge form factors of H,
3He, and He in calculations based on essentially ex-
act Faddeev (A = 3) [18] and Green's function Monte
Carlo (GFMC) (A = 4) [19) wave functions obtained
from the Hamiltonian containing the Argonne v~4 and
Urbana VIII interactions. (This Hamiltonian correctly
reproduces the experimental binding energies of A = 3
and 4 nuclei in Faddeev and GFMC calculations. )

In order to experimentally determine the LLDF in Eq.
(2) it is necessary to measure both the charge form fac-
tor FL, and the Coulomb sum Sl, . For the charge form
factors of 3H, 3He, and 4He we have used accurate its
to the world data provided to us by Sick [20]. As the
longitudinal response can be measured only up to some

& k by inclusive electron scattering, it is necessary
to estimate the contribution of the unobserved strength
for cu & ~~~„ in order to obtain the Coulomb sum. We
have assumed that for ~ & ~~~ the longitudinal re-
sponse can be parametrized as

Rl. (k, cu ) a „)= Rl. (k, w „„;expt)
(»)

where Rl, (k, a „;expt) is the experimental datum at

RL, (k, ~)
IG~,~(k ~)]' (12)

reproduces that calculated as

~ (k) = y(0lp' (k) [~ p (k)]10) —
& .tl(0lp (k)l0)l'

(13)

by exact Monte Carlo methods. Here H is the Hamilto-
nian with the Argonne v~4 and Urbana VIII interactions,
and pl. is the operator given in Eq. (4). The parameter a
is typically found to be in the range 2.8—3.5 (2.6—3.1) for
the A = 3 (A = 4) nuclei and k = 200—600 MeV/c, and
does not depend significantly on the value w chosen.
The present analysis differs from that reported in Refs.
[22,23) in two respects. First, in Ref. [22] the tail contri-
bution to SL,(k) is estimated by parametrizing the high-u
tail of the response as a sum of two decreasing exponen-
tials required to join the data smoothly and to satisfy
the calculated energy- and energy-square-weighted sum
rules. It should be noted that the values for o, reported
above suggest that the energy-square-weighted sum rule
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I This form has been suggested by a study
of the high-u behavior of the deuteron longitudinal re-
sponse, which can be accurately calculated [21]. It has
been found that for the Argonne vq4 interaction, the
power n(k) in the deuteron is in the range 3.0—3.5 for k
between 200 and 600 MeV/c. In the A = 3 and 4 nuclei
it is determined by requiring that the energy-weighted
sum rule WL, (k),
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FIG. 1. Experimental and theoretical longitudinal-longitu-
dinal distribution functions in He. Circles (squares) denote
Bates (Saclay) data; solid symbols denote negative values.
The curves labeled proton, 1-body, and full show theoretical
results obtained from the Faddeev wave function by including
in pl. the proton, one-body, and one- plus two-body contri-
butions, respectively.

may not exist. Second, the energy-weighted sum rule
has been calculated here with a charge operator that in-
cludes both one- and two-body components rather than
the proton contribution only as in Refs. [22,23]. The
two-body components (predominantly those associated
with pion exchange) lead to an enhancement of Wl, (k) of
10%%uo (6.0%%uo), 8.6'%%uo (4.3%%uo), 7 5%%uo (3.4%%uo) in H ( He) and
9.1'%%uo, 7 8'%%uo, 7.4%%uo in He at k = 300, 400, 500 MeV/c,
respectively. The dominant kinetic energy contribution,
which is exactly given by k /2m when only protons are
included in pl. , is little affected by the relativistic cor-
rections and two-body terms. However, the latter en-
hance the leading interaction contributions associated
with isospin-exchange spin and tensor components.

As a consequence of these differences, the present anal-
ysis yields values for Sl, (k) that are slightly larger (&2%%uo)

than those published in Ref. [22] for sH and sHe, the only
data for which a comparison is possible. The Anal anal-
ysis of the Bates data on He, published in Ref. [10],
has given a separated longitudinal response that is some-
what smaller in the quasielastic peak than that used in
Ref. [22] to obtain Sl.(k).

The experimental LLDF obtained for 3H, 3He, and
He are compared with theory in Figs. 1—3. The er-

rors in the experimental LLDF are dominated by those
in the Coulomb sum. The latter has two sources: the
first, from the measured portion of Sl.(k), denoted as
Sl, (k; expt); the second, from the tail contribution, de-
noted as Sl, (k;tail). The error on SL, (k;expt) has been
estimated by adding in quadrature the random errors on
the measured longitudinal response function and by fur-
ther assuming the systematic error to be as large as the
random error so obtained. The error on SL, (k;tail) has
been estimated by assuming it to be given by Sl, (k; tail) x

FIG. 2. Same as in Fig. 1 but for He with theoretical
results from the GFMC wave function.
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FIG. 3. Same as in Fig. 1 but for H.

&-&'+L (k& ~max) /+L (k& (dmax), where EBI, is the experi-
mental error on Rl, (k, w) at w = a,„[typically (20—
30)'%%uo of Rl, (k, ~ „)].

The theoretical curves in Figs. 1—3 have been obtained
by exact Monte Carlo evaluation of the expectation value
in Eq. (3). We have used exact Faddeev (A = 3) and
GFMC (A = 4) wave functions, again corresponding to
the Argonne vi4 plus Urbana VIII interaction models.
The LLDF obtained from the Bates and Saclay data on
3 4He and He are consj.stent with each other, within errors,
and are in good agreement with the results of calculations
in which both one- and two-body terms are included in
the charge operator. In particular, the position of the
zero and magnitude of the second maximum are well re-
produced by these calculations. The results obtained by
neglecting the contributions due to the two-body terms
or by keeping only the proton contributions in pL, are
in poor agreement with the data: the zero is shifted to
higher k's and the strength in the second maximum is
greatly underestimated, as found by Beck [2]. We also
note that in the calculation of 3H, He, and He charge
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form factors, inclusion of the two-body components in pi
is crucial for correctly reproducing the experimental data
in the diffraction minimum region. The minima are lo-
cated at k 630 MeV/c in the sHe and 4He charge form
factors. However, they occur at significantly lower mo-
mentum, k = 370 MeV/c, in the sHe and He LLDF, thus
enhancing the importance of the relativistic and meson-
exchange corrections at low momentum transfers.

The dominant corrections to the impulse approxima-
tion (IA) LLDF can be written in the form (pz „pl, DF)
and (pzt pl. „) for the Darwin-Foldy and pion terms, re-

spectively. It is easily seen that

2

(pl pL„Dp) —Z 2 + terms involving(exp(ik . r,~)),Sm

(14)

where spin-isospin operators have been suppressed. A
similar decomposition of (pr „)pi ) shows that only
terms proportional to exp(ik r,~) are nonvanishing. Their
contribution decreases rapidly with increasing k. Hence,
the DF contribution dominates at moderate and high k
due to the —Z k2/Sms term.

In the charge form factor the DF correction is also ob-
tained as a simple rescaling of the IA prediction. The
latter falls off rapidly in the k = 1—3 fm range. How-
ever, the pion contribution is fairly constant over this k
range [14], thus making it the dominant correction to the
same observable.

In H the LLDF calculated in the approximation in
which only protons are considered vanishes identically.
However, the experimental LLDF extracted from the
Bates data is different from that obtained in the full cal-
culation. This discrepancy is also found in the Coulomb
sum rule: the experimental Sl.(k) (including the tail con-
tribution) is larger by 10% in the k = 350—500 MeV/c
range than the theoretical one. However, the 3H ex-
perimental charge form factor is well reproduced by the
present theory.

To summarize, the LI DF has been calculated in the
A = 3 and 4 nuclei with exact Faddeev and GFMC wave
functions obtained from a realistic Hamiltonian contain-
ing the Argonne vi4 two-nucleon and Urbana VIII three-
nucleon interaction models. The charge operator has
been taken to include, in addition to the dominant proton
contribution, also the neutron contribution, the Darwin-
Foldy and spin-orbit relativistic corrections, and two-
body terms associated with meson exchanges. Within
this framework good agreement has been obtained be-
tween the calculated and experimental 3He and He
LLDF. However, large discrepancies remain between the
calculated and experimental H LLDF.

The inclusive electron scattering experiments on few-

body nuclei have provided the best empirical evidence
to date for short-range proton-proton correlations. How-
ever, the coupling between a longitudinal virtual photon
and the nucleus is rather complicated even at low mo-
mentum transfers. Therefore, an accurate description of
inclusive scattering requires a realistic treatment of both
the nuclear charge operator and the ground-state corre-
lations. It is hoped that future experiments will provide
a deeper understanding of the interplay between these
aspects of electron scattering off the nucleus.
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