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Spectral Density of the QCD Dirac Operator near Zero Virtuality
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We investigate the spectral properties of a random matrix model which in the large N limit embodies
the essentials of the QCD partition function at low energy. The exact spectral density and its pair corre-
lation function are derived for an arbitrary number of flavors and zero topological charge. Their micro-
scopic limits provide the master formulae for sum rules for the inverse powers of the eigenvalues of the
QCD Dirac operator, as recently discussed by Leutwyler and Smilga.
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The issue of chiral symmetry is fundamental in QCD.
Lattice simulations indicate that the symmetry is spon-
taneously broken in the vacuum. This fact has inspired a
large body of work in an attempt to describe the underly-
ing mechanism. However, an explanation from first prin-
ciples is still elusive. In a way, the spontaneous break-
down of chiral symmetry reAects directly on the way the
quark states are delocalized in the vacuum [1,2], a situa-
tion reminiscent of the delocalization of electrons in solids
and the onset of conductivity [3].

A decade ago, Banks and Casher [4] noted that the
spontaneous breaking of chiral symmetry is related to an
accumulation in the quark spectral density at zero virtu-
ality. In other words, as pointed out by Leutwyler and
Smilga [5], the spacing of the eigenvalues A. is not propor-
tional to I/V4t as in free space, but to 1/V4 (V4 is the
spacetime volume). This implies the existence of a mi-
croscopic limit of the spectral density in which the ther-
modynamical limit is taken for fixed values of A, V4 [6].

In the extreme long wavelength limit, the QCD parti-
tion function can be written as an integral over spacetime
independent Goldstone modes [5]. This implies strong
correlations between the eigenvalues of the Dirac opera-
tor in the form of sum rules. These sum rules only in-
volve the microscopic limit of the spectral density.

We conjecture that the microscopic correlations be-
tween the eigenvalues of the Dirac operator near zero vir-
tuality are universal and encoded in the microscopic spec-
tral density and its Auctuations. Our conjecture is
motivated by the following observations: First, the sum
rules hold for the massive Schwinger model [7]. Second,
they are obeyed by the Dirac operator in a liquid of in-
stantons [6] with correlations induced by the fermion
determinant [2]. Third, a random matrix model [6] can
be constructed that in the large N limit reduces to the low
energy limit of the QCD partition function for a given
value of the vacuum angle, and thus satisfies all micro-
scopic sum rules. Fourth, in chaotic systems microscopic
Auctuations are universal and can be mapped on the in-
variant random matrix ensembles [8-10]. Fifth, in the
theory of mesoscopic systems, the Hofstadter model has a
spectral density that coincides with that of the above ran-
dom matrix model in the quenched approximation [11].

P(T) =exp[( N/2o )TTt] . — (2)

The symplectic structure is a manifest consequence of
chiral symmetry, and implies that the quark eigenvalues
occur in pairs. The density of the zero modes, N/V4, is
taken equal to 1, which allows us to identify the space-
time volume and the number of zero modes.

The order parameter in the study of the spontaneous
breaking of chiral symmetry is the quark condensate
defined through

Zf =(qf qf) = lim lim —— lnz,1 d (3)
mf ON ~ N dmf

where the chiral limit is to be taken after the thermo-
dynamical limit. By writing the determinant as the prod-
uct II(k„+mj) one obtains the Banks-Casher formula
[4],

The above observations suggest that a random matrix
model with the general symmetries of the QCD partition
might be key in understanding the general implications of
chiral symmetry breaking in the QCD vacuum. The aim
of the present paper is to construct the microscopic limit
of its spectral density and correlations thereof. They con-
stitute the master equations for the Leutwyler-Smilga
spectral sum rules. We restrict ourselves to the simplest
possible case of zero total topological charge. The model
is outlined in the next section. Using the orthogonal poly-
nomial approach in random matrix theory, we derive an
explicit expression for the spectral density in the chiral
limit for an arbitrary number of Aavors and zero topologi-
cal charge.

Consider a system of n =N/2 zero modes and n anti-
zero modes with interaction given by the nxn overlap
matrix T. For Nf Aavors, the partition function that
reflects the chiral structure of QCD is given by [6,12, 13]

mf IT
Z = 2)TP(T)+det

) lT mf

where the integral is over the real and imaginary parts of
the matrix elements of the arbitrary complex matrix T,
i.e., 2)T is the Haar measure. In agreement with the
maximum entropy principle [14] the distribution function
of the overlap matrix elements P(T) is chosen Gaussian:
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& =~(p, (o)&z, (4)
p„(X), . . . , X„)=J(A)++(X$+mj)expf k

", Z&~ .
O k-1

(12)
where the average ( )z is with respect to the partition
function (1). The continuum spectral density is defined

by

(s)p, (k) = lim lim (I/N)p(A, ),
all mf )ON

and the spectral density p(A. ) is p/(X]) =„/ dpi, p„(X], . . . , A,„). (13)
k 2

These integrals can be evaluated with the help of the
methods developed by Dyson, Mehta, and Wigner (see
[9] for references). The main ingredient is to write the
product over the diA'erences of the eigenvalues as a Van-
dermonde determinant, i.e.,

p(X) =gB(X—X„), (6)

where the eigenvalues ~ X„are the nonzero eigenvalues
of the overlap matrix in the chiral limit. As has been
shown in [6] the parameter a can be identified as o = I/Z.

The sum rules recently discussed by Leutwyler and
Smilga [5] for the QCD Dirac operator using chiral per-
turbation theory involve the average of the sums

The spectral density p~ (X) is obtained by integration over
the remaining n —

1 eigenvalues:

1 I

„~ NP+qgPgq
(7)

II (&3 —&B'=

g 2(n —1) . . . g 2(n —1)
n

(14)

which can be rewritten as

p, (x) ~" p, (x)p, (y)
0 &2p g0dx

respectively, where we have introduced the microscopic
spectral density defined by

T=UAV (lo)

where U and V are unitary matrices and A is a positive
definite diagonal matrix. Since the right-hand side has N
more degrees of freedom than the left-hand side, one has
to impose constraints on the new integration variables.
This can be achieved [15] by restricting U to the coset
U(N)/U(1), where U(1) is the diagonal subgroup of
U(N). The Jacobian of this transformation, which de-
pends only on the eigenvalues Xk of A, is given by

J(A) = + (X) —X$)'+k
k&I

The integrations over the eigenvalues and the unitary ma-
trices decouple. The latter only result in an overall ir-
relevant constant factor and can be ignored. The eigen-
value distribution is thus given by

p, (x) = lim (I/N)p(x/N) .
N

In this Letter our primary interest is to derive analytical
expressions for the average of p, (x) and its pair correla-
tion function that summarize the sum rules.

The partition function (1) can be evaluated by rewrit-
ting the matrix integration in polar coordinates. For an
arbitrary complex matrix we may write [15]

which up to a constant can be rewritten in terms of or-
thogonal polynomials Pk as

Pp(X() Pp(X„')

(1s)

P„ i (X() P„ i (Q)

The Pk will be chosen orthogonal according to the weight
function

d(k )(X +m ) exp[( —n/a )X ]PI, (k Pl(X ) =~ki

For m =0 these polynomials are well known,
IP ' 1/2

Pk(s) = f
0-2

n k!
&' r(Nf+k+1)

where z is defined by

z =nk'/cr'.

The sum can be evaluated exactly with the Christoffel-
Darboux formula, resulting in

where the LI, I are the associated Laguerre (Sonine) poly-
nomials.

The determinants can be expanded according to
Cramer's rule. All integrals can be performed immedi-
ately by orthogonality and, up to an overall constant, we
are left with

n —
1

p~(k) = g '
Li, (z)Lk (z)z +'

exp( —z),, , r(Nf+ k+1)

p)(X) = " [L, )(z)L,—) '(z) —L, (z)L, —2—'(z)lz +'
exp( —z), (2o)
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which, up to a normalization constant, constitutes the ex-
act spectral density of the model (1). The microscopic
limit is obtained by taking N ~ while keeping Nk=x
fixed (remember that n =N/2). This can be achieved
from the asymptotic relation

0.40

p, (x)

I I I

[
I I I

f

I I I

J

I I I I I I I

lim (1/n') L„'(x/n) =x ' J,(2'),
n

(21)

~here J, is the ordinary Bessel function of degree a. The
result for the microscopic spectral density is

p, (x) =(~'x/2) [Jk,(») —J~,+I(»)J~,—,(»)]. (22)

The normalization constant follows from the asymptotic
behavior of the Bessel function and the Banks-Casher re-
lation.

This formula reproduces all diagonal sum rules of
Leutwyler and Smilga; e.g. , the sum

(23)

0.00
0 10

FIG. 1. The microscopic spectral density p, (x) as a function
of the microscopic variable x for 0 ( full line), ] (dashed ]inc),
and 2 (dotted line) flavors.

can be converted into an integral over the microscopic
variable x =EN resulting in

- p, (x)dx q
' r(2p —1)r(Nf —p+1)

(24)
2 I (p)I (p+ 1)1 (Nf+p)

The above spectral density thus summarizes all sum rules,
e.g. , sum rules for noninteger values of p. The spectral
density for 0, 1, and 2 Aavors are shown by the full,
dashed, and dotted curves in Fig. 1.

The nondiagonal sum rules require correlations in the
spectral density. These correlators can be calculated us-
ing similar techniques. Also, the above arguments can be
extended to finite quark masses [16].

The two point correlation function p2(X, X') follows
from (12) by integration over n —2 eigenvalues and sub-

tracting the disconnected part. Using again the proper-
ties of the orthogonal polynomial and the ChristoAel-
Darboux formulae we have

' 2

(k x') = ( i) NF+I/2 —(z+z')
g2 I (n+NF)

2L„(z)L„(z')—L„(z—')L„,(z)
Z Z

(25)

with z =n). /a and z'=n). '
/rr The m. icroscopic limit

p(x, y) =limlv p2(x/N, y/N) is obtained by using ar-
guments similar to the ones used for the spectral density.
The result is

p(x,y) =Z'xy
xJ~,(Zx )J~,—i (Zy ) —yJz, (&y )JN )(+x)—

2 J 2 (26)

The microscopic limit (26) can be used to derive off-diagonal sum rules for the QCD Dirac operator. 1ndeed,

N2~2 (27)

We were not able to evaluate this integral analytically,
but numerically the result is given by

g4

16Nj(Nf+1) ' 28

for Nf = 1,2, . . . , 20 with an accuracy of better than 1

part in 10 and agrees completely with Leutwyler and
Smilga [5].

We have shown that the microscopic spectral density
following from the Gaussian chiral ensemble of complex
matrices reproduces all microscopic sum rules for the
QCD Dirac operator. The corresponding random matrix

model reAects solely on chiral symmetry. We have strong
indications that the microscopic spectral density is univer-
sal and should be a solid property of the QCD Dirac
operator near zero virtuality. The overall spectra1 density
is not. It would be interesting to see how the former com-
pares to the true QCD spectral density following from
lattice simulations. Our approach is relevant for discuss-
ing similar issues related to QCD in two and three dimen-
sions, as well as the spectral properties of strongly cou-
pled QED. Finally, we note that the spectral density for
zero Aavors describes the spectral correlations in the
Hofstadter model as used in the framework of universal
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conductance I]uctuations [11,17,18]. The physical analo-

gy is striking, emphasizing once more the universality of
the bulk structure of chiral symmetry breaking in the
QCD vacuum.
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