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Random-lattice fermions have been shown to be free of the doubling problem if there are no
interactions or interactions of a nongauge nature. On the other hand, gauge interactions impose
stringent constraints as expressed by the Ward-Takahashi identities which could revive the free-
field suppressed doubler modes in loop diagrams. Comparing random-lattice, naive, and Wilson
fermions in two-dimensional Abelian background gauge theory, we show that indeed the doublers
are revived for random lattices in the continuum limit. Some implications of the persistent doubling
phenomenon on random lattices are also discussed.

PACS numbers: 11.15.Ha, 11,30.Rd

The doubling problem of lattice fermions is inevitable
according to the Nielsen-Ninomiya no-go theorem [1] if
the free-field action satisfies the conditions of reflection
positivity, locality, global axial symmetry, and transla-
tional invariance at a fixed scale. An obvious resolu-
tion of the doubling problem is thus to relax one of
those conditions to obtain, in the order listed above, non-
Hermitian [2], nonlocal [8], Wilson [4], or random-lattice
[5—8] fermion formulations. These formulations are all
free of doublers when there are no interactions or when
the interactions are of a nongauge nature [9,10]: the ex-
tra poles in the propagators are removed as the lattice
spacing a decreases, leaving a single fermion mode in the
continuum limit.

Gauge interactions behave very differently on account
of a unique and special property. Local gauge invari-
ance imposes severe constraints on the theory, expressed
mathematically in the Ward-Takahashi identities. In par-
ticular, the fermion-gauge vertex is related to the free
inverse propagator,

Ap(»&) - ~„,Gp(p)

giving the interaction vertices mode dependency. This
different coupling strength of doublers to gauge fields
has been shown to revive these modes in loop diagrams,
even though they are suppressed at the free-field level, in
studies of some nonlocal [ll] and non-Hermitian formu-
lations [12,13]. For this reason, we investigate the issue
of fermion doubling on random lattices with gauge inter-
actions [14].

In the random-lattice approach, suitable quantities are
measured on a random lattice and then averaged, ei-
ther quenched or annealed, over an ensemble of lattices.
Apart from the extra work involved in generating an en-
semble of random lattices, this approach better approxi-
mates the scale-free rotational and translational symme-
try of the continuum than regular lattices. Thus, the
continuum limit may be more easily reached on random
lattices than on regular lattices of the same size. More
relevant to this discussion, since there is no fi~ed Bril-

—ln Det (G~Gp ) = I 2 + O(g ), (2a)

I'2 = Tr[(G~'Gp —1) —, 2(G~ Gp —1) ], (2b)

d2xd yA„(x)II~ (x, y)A (y) + O(g4), (2c)

where G& is the fermion propagator in the background
gauge field A„, g is the gauge coupling, and II„(x,y) is
the vacuum polarization tensor.

I'z as defined by Eq. (2b) implicitly contains the
fermion-gauge vertex as it appears in the lattice action,
even though the explicit form is complicated and not
known. Using background fields ensures our results will
not be marred by internal gauge interactions; hence we

louin zone, there need be no extra poles of the propaga-
tor. Even if extra poles do exist, the one-to-one corre-
spondence between propagator poles in momentum space
and zero modes is not necessarily valid since plane waves
are no longer eigenstates of the Dirac operator. Alter-
natively, one could appeal to the fact that there is no
transfer matrix on a random lattice (at least for a finite
lattice), since there are no identical time slices, to argue
that there may not be a clear relation between poles of
the inverse propagator and the particle spectrum [8].

This expectation of no doubling on random lattices has
been realized in various studies of free-field theory in both
two and four dimensions [6,7]. It has also been shown
that random-lattice theories with four-point interactions
are doubler free [9], and the same is claimed for random-
lattice theories with gauge interactions [7]. We address
this claim in this Letter, emphasizing the role of gauge
invariance in the suppression of doublers. We find that
the random lattice does not remove fermion doubling if
gauge invariance is maintained on the lattice. However,
a breaking of the gauge symmetry at the lattice scale will
suppress the doubler modes.

We wish to compute the correction to the fermion
determinant when Abelian background gauge fields are
present on a two-dimensional Euclidean random lattice,
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expect to see a clean signal which increases with the num-
ber of fermion species contributing to the single fermion
loop. Comparing with identical calculations for naive and
Wilson fermions on square lattices, which are known to
be fourfold doubling and double free, respectively, clari-
fies the continuum limit behavior of our random lattices.

Our lattice is constructed from a triangulated array of
N fixed square lattice vertices by a sequence of Alexander
"flip" moves. Each move randomly selects a quadrilateral
ABCD, with a unique internal link AC; the internal link
is deleted, and a new link BD is introduced. A flip is
performed only if the local orientability of the lattice is
preserved and there are no crossed links. We chose to
randomize the lattice with 6N successful flips; see Fig.
1. The resulting lattice has a fixed size independent of
Ripping procedure, so measured quantities do not need
to be scaled by the average link length s. However, s is
a lattice dependent internal scale, which increases with

Hipping, making highly Hipped lattices less localized and
thus more sensitive to fi.nite size effects.

The (Euclidean) fermion action is chosen such that it
reduces to the naive result on lattices of regular arrange-
ments of links. Representing the vertices and links by
2-vectors,

(3)

At a vertex x with coordination number C, the differen-
tial link sum is constructed by averaging the effective
square lattice derivative approximated by C pairs of
orientation-consecutive links, (k, l),

have x as a vertex. Gauge interactions are introduced in
the usual gauge-invariant manner using the link variables
U +i = exp[ig f& A(x) dx]. An alternative formulation
U +i = exp[igl A(x+l/2)], which is not gauge covari-
ant under the usual continuous gauge transformations, is
also considered. The resulting action is Hermitian in the
Euclidean sense, local, and apart from the mass term,
axially symmetric.

Measurements are made in a background gauge field

(5)

with fi.xed physical quantities: mass = m = 0.1, area=
V = 64, and electric field = E = 0.05, for lattice
spacing= G = (1.0, 0.5, 0.3333,0.25).

We first compute a quantity derived from the free prop-
agator

(1+ o) +o (z ~ )~ (» ~o+()

(6)

evaluating the average zero-momentum real particle
propagator projected along the» direction. Figure 2

summarizes the calculation, clearly identifying the dou-
bler suppression of free fermions on a random lattice, in
agreement with [7]. Indeed, apart from some minor small
distance Huctuations of the order of the internal scale, the
random lattice result matches the continuum completely;
the normalization is reproduced exactly, and masses do
not need to be tuned.

The calculation of I'2 is complicated by its sensitivity
to the structure of the lattice. This sensitivity comes

1.0-

C3 [l @'+„—k@'.+, + (k —l)@'.], (4)

where we have used the two-dimensional antisymmet-
ric product k I = k„l e», and @~ = gu~ 4~ is the
"area" weighted dimensionless field. The area u is de-
termined by taking 1/3 of the area of all triangles which
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FIG. 1. A typical 8 x 8 lattice.
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FIG. 2. Fermion propagation, f(g)
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current of axial symmetry is, of course, not gauge invari-
ant. Thus it cannot be identified with the continuum
axial current which is invariant. It should be, instead,
identified with a combination of the continuum current
and a gauge-noninvariant term, whose divergence gives
us the axial anomalies,
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FIG. 3. Variation of I'2 with a.

from two sources: variations in the average link length,
s, and the variation due to inequivalent arrangements of
links. Hence we consider an ensemble of lattices ran-
domized by 6N, 12K, 24K, and 48K Hips. Averaging
over different lattices at fixed s, (I'q)T shows linear vari-
ation with s; we extrapolate to s = a. These are the
results shown in Fig. 3. The naive case approaches the
continuum limit quadratically with a and the Wilson ap-
proaches 1/4 of the same result linearly, as expected.
The same graph also indicates the random lattice re-
sults; the number of lattice configurations used in the
extrapolation is displayed next to each point. The lattice
gauge-invariant calculation is clearly more like the naive
fermion than the Wilson. Moreover, as 0(I'2)7/cps ) 0,
this serves as a lower bound. With gauge invariance bro-
ken, the converse is clearly seen; the result is certainly
more like Wilson than naive. In this case 0(I'2)T /Bs ( 0,
and thus the result is an upper bound. In either case,
the random-lattice results approach the continuum re-
sults more rapidly than either Wilson or naive formula-
tions, as expected in a random-lattice approach.

It is clear from our results that there are doublers on
random lattices when gauge invariance is maintained at
finite lattice spacing, since the extrapolated determinant
is comparable to that of naive fermions. It can also be
seen that the doubling can be avoided if one gives up
gauge invariance (but needs and hopes to recover it in
the continuum limit).

Both lattice fermion actions are invariant under the
global axial transformations. When there are doublers on
random lattices, the axial anomalies are canceled in the
usual manner among opposite-chirality species. When
there is no doubling in the gauge-noninvariant formu-
lation, the conserved lattice current being the Noether

We believe that the results obtained here are also appli-
cable to other kinds of random lattices insofar as transla-
tional invariance is broken. The results of [15] of fourfold
doubling on a random block lattice seem to support this
claim, even though the interpretation and thus the con-
clusions reached there are different from ours.

Our doubling conclusion for random lattices is not only
plainly disappointing but also points to some serious im-

plications. We have extended the lattice no-go theo-
rem and at the same time emphasized the importance
of gauge invariance in the phenomenon of lattice fermion
doubling. The failure of random lattices to accommo-
date chiral fermions could either undermine the point of
view that at the Planck scale or higher the structure of
spacetime is that of randomness, or, taken with other
complete failures in dealing with chiral fermions, could
be a hint that our understanding of chiral gauge theo-
ries is incomplete. Correspondingly, the quantization of
those theories is in need of further studies. One of us has
been pursuing this latter path [16].
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