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The possible use of loosely bound Rydberg atoms for remote gravimetric measurements is explored.
The first-order corrections to the nonrelativistic nS and nP states for n & 2 are obtained for the first
time. A procedure to evaluate corrections of any order is outlined and applied to the IS state in a
spherical symmetry. It is shovrn that observations of the eKects described in this Letter near objects
of neutron-star-like densities are possible in principle only in the absence of significant magnetic
fields.
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It has been known for quite some time that the en-
ergy eigenstates of an atom are afFected by the local
space-time curvature [1]. These energy shifts would be
detected by a locally inertial, co-moving observer close
to the atom and are exclusive of further gravitational,
Doppler, and cosmological shifts possibly apparent to far-
away observers [2]. The typical treatment of the prob-
lem found in the literature [1] consists of using Fermi
normal coordinates [3] to write the Dirac equation for a
one-electron atom in curved space-time and of deriving
corrective terms to the Bat-space Hamiltonian. In what
follows we shall be mainly concerned with the nonrela-
tivistic limit of this approach (that is, v/c =—P &( 1,
not the limit of vanishing curvature). This yields a time-
independent Schrodinger equation containing an effective
classical geodesic deviation potential describing the tidal
interaction of the atom with the gravitational field. The
nonrelativistic Hamiltonian HNR, to first order in the
Riemann tensor, reads

1 g Zc 1 m~NR = P + P+OlOm& & )
2p

where p, is the reduced mass, Ao~o~ are the components of
the Riemann tensor, and 2." is the position of the electron
in the nucleus-centered reference frame. It should be no-
ticed that nuclear e8ects, radiative corrections, and the
electron-nucleus gravitational interaction are neglected,
and that cgs units are used.

In the case of a hydrogenlike atom of principal quan-

turn number n in free fall at the surface of a spheri-
cal object of mass M and radius R, the nonvanishing
components of the Riemann tensor are GM/Rs and
2;" ~ r aon, where ao is the Bohr radius. Thus the
order of magnitude of the energy shift is, to first order,
4E (GMti/B )aon = (4vr/3)Gppaon It was fi. rst
shown by Parker that, in order for the energy shift of
a hydrogen atom in a tightly bound state at the hori-
zon of a black hole to be of the same order as the I amb
shift (4.4 x 10 eV), the Schwarzschild radius should
be 10 cm, typical of unobserved cosmological black
holes [1].

The situation changes if, instead of concentrating on
the first few tightly bound states of hydrogenlike atoms,
one considers highly excited (n )) 1), loosely bound ones,
commonly referred to as Rydberg states [4]. Since the av-
erage distance of the electron from the nucleus is macro-
scopic in these cases (r )) ac), the electron is much more
sensitive to small external perturbations. Since several
radio and optical lines from Rydberg atoms with princi-
pal quantum number up to n 350 have been detected
in various astrophysical environments (see, for instance,
[5)), it is interesting to see how the above conclusions are
modified in this case and if any observations of this pro-
cess are possible. By using the above expression it can
be seen that, for this gravitational tidal shift to be even
just a small fraction of 1 peV, it is necessary that n be
of the order of or larger than 103—104.

It is straightforward to verify, again from Eq. (1),
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that, for n 104, the average Coulomb potential en-
ergy Vc i ~ Z—e /r —Ze /apn also falls in the
p,ev range. This implies that, for values of n and of the
Riemann tensor components for which the effect might
be measurable, the perturbation induced by the gravita-
tional field is a non-negligible fraction of the distance of
the typical energy level from the continuum. This has
three major consequences. The first is that, under these
circumstances, the frequency shifts of recombination lines
produced by bound-bound (n+ 1)P —+ nS transitions
with n && 1 will be appreciable. The second consequence
is that the probability of electron tunneling (gravitational
field ionization) will be comparatively large, even though
not necessarily important. Finally, fine structure effects,
which scale as 1/n2 of the eigenenergy, can be neglected.

The details of the effects of a tidal perturbation on
the Coulomb Hamiltonian are of course determined by
the distribution of mass and energy via the particular
field equations used. However, we can use the trace-free
property of the Weyl conformal tensor [6] to draw some
general conclusions about the quadratic form HN~'~&~' ——

(1/2) pRpio~ x'x in Eq. (1) (we shall assume that form
to be diagonal [1]).

Since we are working to first order in the metric expan-
sion in series of the Riemann tensor, and since the metric
is static, the trace of the Weyl tensor in vacuum is simply
given by Rpipi + Rp2p2 + Rpsps = 0 (if the adopted field
equations yield R = 0, R p = 0 in vacuum).

Thus at least one of three spatial elements of the di-
agonalized Riemann tensor must be negative in sign.
This is of course well known in the spherically symmet-
ric case, where we have [7] Rpipi = Rp2pg = GM/R,
Rpsps ——2GM/R if the z axis is oriented radially. The
physical interpretation of this result is that it is never
possible to produce a tidal field the only efFect of which
is to stretch (or to squeeze) the wave function in all spa-
tial directions; rather, the atom is generally stretched in
some directions and squeezed in others.

Since the probability of the electron tunneling out of
the Coulomb potential well in at least one direction is
nonvanishing, the overall spectrum is unbound, in qual-
itative analogy with the Stark effect. Under these cir-
cumstances stationary states do not rigorously exist, but
are replaced by finite-width quasistationary resonances
where the electron may spend an average time inversely

proportional to the strength of the perturbation. Un-
der these circumstances, any perturbative approach to
the real part of the complex eigenvalues will only yield
asymptotic series [8].

The expansion of the metric to first order in the Rie-
mann tensor makes the problem separable (a reduced
mass can be introduced), but not integrable. This is so
because the Hamiltonian at Eq. (1) describes a reduced
three-body problem (any efFect of the electron on the
gravitational source is neglected), which is not integrable
even in classical mechanics. Details about all the mathe-
matical methods employed are provided in a forthcoming
publication ([4], and references therein).

The first-order corrections E~ +
——(g„z ~HNR 'ig„s) for

the nS states are

&.s =(&) 0 g(&) pRoio —x'x g„~*(r)d&,
2

(3)

where Boo is the time-time component of the Ricci ten-
sor. A similar calculation for the t = 1 states requires
the diagonalization of the (g(pl

~
2p, Rp, p~

x'x~ ~Q„I, , )
3 x 3 matrix and the use of the same above integrals in-
volving the associated Laguerre polynomials. A direct
calculation yields

n (n —1)(Roo + 2Ro'o'),4Z~e4p

where i = 1, 2, 3 corresponds to the P~, P&, and P, or-

bitals, respectively. The Fi&, Ezs, and E2& shifts given
by the above equations correspond to those previously
appearing in the literature [1].

The first-order frequency' shifts of recombination lines
for (n + 1)P ~ nS transitions, commonly referred to as
Hna transitions (An = 1) are, in a spherical symmetry,

where g„&(r) are the unperturbed wave functions. The(o)

calculation proceeds by performing a suitable change of
variable in Eq. (2) and by evaluating integrals of the kind

fz p e ~L"„ i(p)L„" i(p)dp. This can be done by itera-
tively using the orthogonality property of the associated
I,aguerre polynomials [9]. A direct calculation shows that
[10]

j. A, GAvH" = Av„" = —
4 n(n+ 2)(n+ 1) p = 3.38 x 10 n(n+ 2)(n+ 1) pi4Hz,

n(n+ 2)(n+ 1) p = —6.76 x 10 n(n+ 2)(n+ 1) pi4Hz,3 Z 8 P
(5b)

where pi4 is the average density expressed in units of 10i4 g/cm .
In a spherical symmetry the energy shifts predicted by Eq. (3) vanish, and one would need to calculate corrections

of order higher than the first in the Riemann tensor. This is of course incorrect within the framework of Eq. (1),
which is valid only to first order. However, for the purpose of discussing some interesting orders of magnitude and of
illustrating the general procedure, a calculation is carried out to obtain the second-order correction to the energy of
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the 2S state in the assumption that the Hamiltonian of
Eq. (1) is exact. The calculation, which makes use of a
no-wave-function procedure developed by Fernandes and
Castro [11] yields

(2) 15 h

There is no guarantee that expressions for higher-order
corrections for any n in closed form exist. Since high-
order perturbative calculations for states with n )) 1
are made quite difIicult by the presence of large ba-
sis sets, the use of semiclassical Einstein-Brillouin-Keller
(EBK) quantization methods is advised. Here we shall
just present an elementary version of such an approach.

If we restrict ourselves to circular orbits in the x-y
plane and by assuming the presence of a magnetic field
in z (radial) direction, the equation of motion can be
easily shown to be

pv

p

eBV Ze~
+ 2 + pRoioip,c p

where p = x + y . By imposing the EBK quantization
condition, and by eliminating the speed v, one obtains,
after neglecting higher-order terms in the Riemann ten-
sor,

p 1(p—+-I n
ap 4 (Rl, (8)

where ao is the Bohr radius, and Rl, is a generalized
Landau radius defined as

R, —=
/

0 4P Ro 101 )
This tidal gravitational radius can be interpreted as the
minimum size of the region in which an electron con-
strained to move in the x-y plane can be confined by
tidal forces according to the uncertainty principle [4]. By
solving Eq. (8) to first order in this case, one obtains the
same first-order corrections to the energy as Eq. (4) for
n )) 1, to within at the most a factor of 2. This semiclas-
sical model allows one to express the erst-order energy
shifts in terms of the fourth power of the ratio of the
Bohr radius to the tidal Landau radius, (ap/Rl. p) . In
the case of intense magnetic fields, the spectrum of hy-
drogenlike atoms displays the characteristic quasi I an-
dau modulations spaced by approximately 1.Ghee„where
~, is the cyclotron frequency [12]. By again using a semi-
classical approach, it is possible to show that the intro-
duction of space-time curvature causes a change in such

t'e'B' 4p'Roioi l
(c2h, 5 )Rg —=

In curved space-time this quantity is in general difI'erent
from the fiat-space Landau radius Rr, p = (ch/eB) ~ . If
B = 0, the generalized Landau radius reduces to

a modulation spacing of the order of (Rl.p/R&) . In
the magnetospheres of pulsars B 10 G, which makes
(Rl.o/Rg) 10 . This allows one to conclude that
tidal gravitational perturbations on the structure of the
quasi Landau spectrum of typical neutron stars are im-
possible to observe. For fields B 10s G, the effect
is still 10 . It should be mentioned, however, that
there is still considerable uncertainty as to the possibility
of the existence of such low field pulsars, and that radi-
ation from such objects could be observed only for high
rotational speeds of the neutron star [13].

Of course, in order for any observation to be possible
even only in principle, line broadening processes, such as
natural, Doppler, and collisional broadening, and Stark
interaction with neighboring atoms, must be sufficiently
depressed (we neglect possible line profile broadening due
to rotation for the moment).

The multidimensional semiclassical (EKB) quantiza-
tion in the general case cannot yield information con-
cerning the tidal field ionization probability [14]. How-
ever, some orders of magnitude can be obtained by
studying spherically symmetric potentials of the kind
U(r) = Ze /r —(GMp/R—) r In thi. s case the problem
is separable and WKB quantization can be performed di-
rectly. By approximating the shape of the efr'ective po-
tential close to the maximum U as a parabola, one
obtains that the transmission coefIicient is, with expo-
nential precision,

1

& —Um&
1 +exp

Gp

This equation shows that the transmission coefficient de-
pends exponentially on the ratio of the two characteristic
times of the problem, that is, the period of recombination
of the transitions, and the dynamical free-fall time of the
configuration. In the case of a p = 10i g/cms object,
the transmission coeKcient is appreciable only for states
within 10 eV of the continuum. This shows that
line broadening due to the limited lifetimes of the states
will be negligible under most circumstances.

Since both the radiative and resonance lifetimes are
comparatively large, the only significant efFects are
Doppler, collision, and electron pressure (Stark) broad-
ening. In order for the tidal energy shifts to be observ-
able, line broadening processes must not cause the Hna
lines to merge with one another and into the contin-
uum. Well-known elementary considerations yield the
order of magnitude of the Doppler and of the colli-
sional broadenings as AvD (e p/2vrh c)(kT/mH) ~

and Av, (l'i /2p, e )(3kT/mH) ~ n JV, respectively
(we have specialized to the case of atomic hydrogen). An
approximate expression for the electron pressure broad-
ening was obtained by Griem [5]. By using these three
expessions and the approximate equation for the distance
between two contiguous Hno, lines, one obtains three con-
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straints on the temperature T, the total number density
JV, and the electron number density JV, of the media in-

volved depending on the value of the principal quantum
number n considered [4]. These constraints are, respec-
tively,

1.1x10 3T&(, K, (12a)

9.0 x 1028 1
JV (( i(~

—
s cm

T n
(12b)

1.0 x 10i4 T
n 1/2+ ln(6. 6 x 10 s Tn)

cm

(12c)

By assuming a turbulent velocity of the medium vt„,
0.1 km/s, one obtains a turbulent Doppler broaden-
ing (Av/v)«, 3 x 10, which sets an order-of-
magnitude limit to the smallest observable frequency
shift. Prom Eqs. (5a) and (5b) it results that, for in-

stance, (Av/v)t'~ ' = (27r/3)(h G/Z e ps) n7 p, for n ))
1. Thus the above condition is satisfied for n = 900 or
larger.

The Doppler broadening constraint could be mar-

ginally satisfied at typical surface temperatures in the 106

K range, since Eq. (12a) demands that T (( 107 K for the
indicated values of n. In the absence of electromagnetic
fields, the values of both the ion and electron densities
above the surface would be negligible at distances larger
than the pressure scale height h kTR /mH GM 1
cm.

It is also important to point out that, since the recom-
bination radiation is received from an atmosphere sur-
rounding the object, the lines would not display a shift
but rather a broadening pattern, reHecting the range of
values of the Riemann tensor components in the region.

One must conclude from the results presented in this
Letter that, unlike the atoms in their first few excited
states studied by Parker, Rydberg atoms in very high en-

ergy levels could in fact be used as probes of space-time
properties in realistic astrophysical objects, even though
not in the strong mixing or quasi Landau regimes. Radio-
quiet neutron stars which may have been detected only
through their gravitational interaction with an orbiting
companion could represent potential observational tar-
gets [13]. In this case, however, the lack of radio emission

from the Goldreich-Julian mechanism [15] may make the
detection of radiation from these objects problematic.

Research on the behavior of one-electron atoms in met-
rics other than that of Schwarzschild, such as, for in-
stance, in the case of rapidly rotating dense objects, and
on the case of nonradial magnetic fields, will be reported
in a forthcoming publication [4].

If objects where tidal gravitational perturbations on
atoms can be measured are identified, one will be able to

approach the study of the gravitational eEects on Ryd-
berg atomic systems from the observational point of view.
In perspective, this might represent a new observational
tool for the spectroscopic determination of the average
density of neutron starlike objects.
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