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Kagome Antiferromagnet with Defects: Satisfaction, Frustration,
and Spin Folding in a Random Spin System
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It is shown that site disorder induces noncoplanar states, competing with the thermal selection
of coplanar states, in the nearest neighbor, classical Kagome Heisenberg antiferromagnet. For weak
disorder, it is found that the ground state energy is the sum of energies of separately satisBed
triangles of spins. This implies that disorder does not induce conventional spin glass behavior. A
transformation is presented, mapping ground state spin configurations onto a folded triangular sheet
(a new kind of "spin origami") which has conformations similar to those of tethered membranes.
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It is well known that geometrical frustration in some
nonbipartite lattices prevents long range magnetic order
from being established and allows novel kinds of low tern-
perature magnetic states to develop [1—3]. The Heisen-
berg Kagome antiferromagnet with nearest neighbor cou-
plings is one of the most interesting of such systems. The
classical system exhibits a rich, nontrivial ground state
degeneracy, with both coplanar and noncoplanar states in
the degenerate manifold. For the coplanar states, linear
spin-wave theory yields one zero-energy mode for every
point in the Brillouin zone [4, 5]. All noncoplanar states
have fewer zero modes, and, as a result, thermal eÃects
select a nematiclike coplanar ground state [5], an example
of the "order by disorder" effect [6, 7]. Numerical stud-
ies have'confirmed the tendency for thermal selection of
the nematiclike state [5, 8], and there is also evidence [4,
5, 8—10] for a tendency toward v 3 x ~3 ordering in the
plane.

By far the best-studied experimental Kagome system
is the magnetoplumbite, SrCrs„Gai2 9„0ts [11].F» p =
1, this system contains dense Kagome layers, separated
by dilute triangular layers, of Cr. Although its Curie-
Weiss temperature Ocw (for p = 1) is over 500 K, no
sublattice ordering is found down to helium temperature,
where a spin glass, rather than an ordering transition is
observed at a temperature TI. The ratio Ocw/TI is
about 130, at least for p ) 0.5 [11—13]. Tf itself varies
rapidly with doping [12, 13], having its maximum value of
about 4 K near p = 1, where one might expect structural
disorder to be least important, and falling monotonically
as p is reduced. These observations raise two questions:
(1) Why is spin glass behavior, with a temperature scale
of order J, not generated by nonmagnetic impurities at
the 10%%uo to 20%%uo level and (2) what is the origin of the
spin-glass-like behavior which is observed even for p —1?
It is the first question which is addressed in this Letter,
while the second is discussed briefly in our conclusions.
Our main results are as follows:

(1) Quite generally we find that disorder induces non-
coplanarity in the ground state. At low temperatures,
the nematiclike state, which is selected by thermal Buc-
tuations, is overwhelmed by this tendency of disorder to
induce noncoplanarity [14].

(2) For a large class of distributions of spins of ran-
dom magnitude, including dilute distributions of vacan-
cies, the ground state configuraton is such that the energy
of each separate triangle is minimized. We call this the
"rule of satisfied triangles. " In the general case, not all
triangles are satisfied, but we conjecture that the rule
can be extended by replacing "triangles" by more com-
plicated spin clusters.

(3) The rule of satisfied triangles implies that the en-

ergy of a collection of nonoverlapping defects is also inde-
pendent of their spatial arrangement. Hence the system
is not a spin glass, despite the change in the degree of
frustration introduced by the disorder.

(4) For the uniform system and for moderate random-
ness, we introduce a mapping of the ground states of the
Kagome system onto a folded, close-packed sheet of tri-
angles. The folding of this sheet of "spin triangles" con-
stitutes a new kind of "spin origami, " a term originally
coined by Ritchey, Coleman, and Chandra [15] for the
folding of spin planes in the Kagome lattice. The prop-
erties of this folded sheet are related to those of "tethered
surfaces" which have been studied extensively by Nelson
and co-workers [16]. Folding is used to study a variety
of ground state configurations for the pure and diluted
cases.

In the remainder of this Letter, we justify and elabo-
rate on the four points listed above.

The instability of coplanar states against perturbations
to the magnitudes of the spins is easily demonstrated by
the case of a single defect spin, S, in an initially coplanar
ground state configuration of spins, S. Consider the spins
in the two hexagons which include 8' [cf. Fig. 1(a)].
Rotations by small angles +0 into or out of the plane,
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FIG. 1. (a) A Kagome lattice of spins (dots) with nearest
neighbor interactions (solid lines). S' labels a defect spin. (b)
The same Kagome lattice of dots, superimposed on a trian-
gular lattice. The lengths of the sides of each triangle rep-
resent the lengths of spins, and the arrows represent their
directions. For simplicity, S = S' here. Making S' longer
or shorter would require folding the sheet of triangles. As
shown, the figure represents the perfect q=0 ground state. (c)
Left: a triangular sheet of NT triangles folded into a stack.
When flattened into a single triangle, this stack represents the
~3 x ~3 ground state. Right: the "weather vane" defect, a
stack of 1VT —6 triangles with six stacked triangles (a folded
hexagon) protruding. The dihedral angle, P, between the two
stacks is arbitrary.

which alternate in sign around each hexagon, may have
two possible relative phases. If bS = S' —S & 0, then
the mode which is odd under inversion through the site of
spin S' has a negative energy, bE = JSbSO, and a node
at the site of S'. If bS ) 0, then the symmetric mode
lowers the energy by 6'E = —3JS6S0, and S' is rotated
by 28. The instability arises because there is no quadratic
restoring force for such modes in the perfect system. For
a finite density of defects, out-of-plane distortions will
compete with thermal excitations favoring coplanarity. If
the spatially averaged value of [bS[/S is of order 1, then
thermal selection cannot suppress out-of-plane canting.
If it is small compared to 1, then the canting grows up
at low temperatures, T/JS2 &( 1.

Figure 2(a) shows the results of a Monte Carlo calcula-
tion of the low temperature nematic correlation function,
g(r), which is defined in Ref. [5], for various concentra-
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FIG. 2. (a) Nematic correlation function, as defined in
Ref. [5], for T/J = 0.00025 and 432 lattice sites Solid. dots
are for no vacancies (x = 0); the open dots are for 3 vacancies
(x = 0.007); the solid triangles are for 8 vacancies (x = 0.02);
and the open triangles are for 20 vacancies (x = 0.05). (b)
Nematic correlation function g„(r, r') for a system of 431 spins
plus one vacancy, with r' located in a triangle adjacent to the
vacancy and T/ J = 0.000 25.

tions of vacancies between x = 0 and x = 0.05. This
figure shows that even a low density of vacancies is suf-
ficient to suppress nematic order, and suggests that ne-
matic order should not be observable in samples such as
those discussed in Ref. [11]. This large effect results
from the fact, derived below, that each isolated vacancy
locks at least ten neighboring spins into a noncoplanar
configuration.

Next we consider ground state configurations of the
Kagome system, with disorder in the magnitudes of the
spins and/or dilution with vacancies, for which the near-
est neighbor Heisenberg Hamiltonian may be written as
a sum over all triangles, 4,

3
$ 2 3

E=(J/2)) ) S~„[ —) S~, (1)
m=i ~ m=i

where m is summed over the three spins in a triangle.
This means that a lower bound for the ground state en-
ergy is obtained by minimizing the total spin of each tri-
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angle separately. A particularly simple case is the one in
which the spins in every triangle add to zero, i.e. , where
they form closed triangles, as happens, for example, in
ground states of the perfect system.

A useful device for describing Kagome spin ground
states is spin origami, which is most easily visualized for
the case of no disorder. Then in the ground state, each
Kagome triangle of spins forms a closed equilateral tri-
angle in spin space which we call a "spin triangle. " Each
spin forms an edge shared by two neighboring spin tri-
angles [see Fig. 1(b)], and hence a ground state may be
represented by a folded sheet, fashioned by joining spin
triangles together along common edges. The g=0 state
corresponds to a fiat sheet [Fig. 1(b)]. The ~3 x v3
state is generated by folding the entire sheet into a single
triangle, as shown on the left in Fig. 1(c). The so-called
"weather vane defect" of the ~3 x ~3 state corresponds
to a single protruding triangle, six layers thick, which
can make any angle with the rest of the spin triangles as
shown on the right in Fig. 1(c).

Introducing defects in the magnitudes of spins can be
thought of as shrinking or lengthening sides of spin tri-
angles. In general, this will lead to buckling of the sheet.
A vacancy is generated by shrinking a bond shared by
two triangles to zero length. The remaining sides of the
triangles, which then abut, represent antiparallel spins.
To construct the ground state for a single vacancy by
folding, a rhombus is cut out of the sheet which is then
folded so as to join the cut edges. The resulting sheet
can be made coplanar (or even folded into a single trian-
gle) except for two triangles, each four layers thick and
involving the four cut edges, which protrude out of the
plane, forming two sides of a tetrahedron (faces CEF and
ADF of the tetrahedron in Fig. 3). A third face is the
plane (ABC), defined by the rest of the spin triangles.
The fourth face (BDE) is empty. In this way, noncopla-
narity can be localized to the ten spins in the three edges
of the two protruding triangles. (These are the ten spins,
connected by dashed lines, in the two hexagons which
share the vacancy in Fig. 3.) Of course there can also be
a larger or even infinite number of noncoplanar spins be-
cause of the degeneracy of folding, but only the ten spins
around the vacancy are forced to be noncoplanar. Simi-
lar arguments apply to any isolated defect spin S', where
0 & S' & 2S, so that the surrounding spin triangles can
close. For S' ) 2S, the spins in the two triangles involv-
ing S' are colinear and the ground state energy is equal
to the lower bound in which the sum of the spins in the
two triangles involving S' is S' —2S. The usual entropy
argument [5] implies that spins away from a vacancy will
be coplanar. Figure 2(b) shows the low temperature ne-
matic correlation function, taking the origin in a triangle
next to the vacancy. The correlation function decays in
a few lattice spacings to a value —1/3, which is consis-
tent with the spins being coplanar outside the tetrahedral
arrangement of Fig. 3.
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FIG. 3. Spin map of the ground state configuration
around a vacancy. A, B, C, +D, +E, and +F denote spin
orientations in terms of the directions of labeled edges of the
tetrahedron. The tetrahedron is the spin origami represen-
tation of the same state. The base ABC contains N~ —8
triangles; the faces CEF and ADF each contain 4 triangles;
and the face BDE is empty.

The fact that the eÃect of an isolated defect is localized
to a very small area implies that, for a small concentra-
tion of defects, the ground state energy of the disordered
system is equal to the sum of energies of independently
satisfied triangles. In fact this statement also applies to
cases where pairs of defects are close together or even
nearest neighbors. In the case of divacancies, the trian-
gle containing the two defects cannot close. Nevertheless,
the ground state obeys the rule of satisfied triangles. It
can be represented by spin origami by making a cut (a
kind of dislocation) along a line of bonds emanating from
the divacancy and then overlapping the two rows of tri-
angles along the cut. Furthermore, we have checked that
neighboring pairs of divacancies also satisfy the rule of
satisfied triangles. Thus it appears that the rule applies
to quite a wide range of defect densities and configura-
tions.

Our results for vacancies are consistent with the recent
work of Huber and co-workers [17] who studied the di-
luted Kagome antiferromagnet and obtained the striking
result that the distribution of local fields is discrete with
a small number of values: 2JS, JS, and 0. The rule of
satisfied triangles explains this result immediately. Spins
on all triangles with no vacancies or one vacancy feel the
largest local field, and spins with two neighboring vacan-
cies experience a field JS. The fraction of spins with this
local field is proportional to x2 where x is the fraction of
vacancies. Spins with zero local field arise from more
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complicated configurations or from boundary effects.
It is not the case, however, that the rule of satisfied tri-

angles is valid for all random distributions of spins. We
have found a number of situations in which the rule fails,
all of them involving rather strong disorder, i.e. , clusters
of defects. This suggests a generalization of the rule of
satisfied triangles to a rule of satis6. ed clusters. The rule
is simply that the ground state energy is the sum of en-
ergies of independently satisfied triangles and clusters.
Clusters can be identified by calculating the local "tri-
angle frustration energy" which is the difI'erence between
the energy of a triangle in a ground state configuration
and the minimum possible energy for that individual tri-
angle. Clusters are isolated regions in which the local
triangle frustration energy is nonzero.

The rule of satisfied trianglesiclusters implies that the
ground state energy does not depend on the relative posi-
tions of defects or on their degenerate degrees of freedom
(such as up or down). This is difFerent from the usual
situation in disordered spin systems. Two defects, which
introduce frustration into a ferromagnet or antiferromag-
net, induce overlapping spin distortions, resulting in an
indirect interaction between the defect degrees of freedom
and, ultimately, in spin glass behavior [18]. ln our sys-
tem, a defect induces strong local perturbations, but the
system is so soft that this perturbation does not generate
effective pair interactions between defects. Conventional
spin glass behavior cannot arise in this situation. For a
low density of vacancies, the ground state degeneracy re-
mains infinite because there are still an infinite number
of ways to fold the remaining spins. We note that similar
arguments have been made by Villain [18] for the case of
the pyrochlore antiferromagnet which he described as a
"cooperative paramagnet. " The rule of satisfied clusters
breaks down when the disorder is so strong that the clus-
ters merge into an infinite cluster. In this situation, spin
glass behavior may occur [18]. We also note that weaker
interactions which are not included in our model, such
as magnetic anisotropy, further neighbor, interlayer, and
dipole couplings as well as quantum effects [19],will lead
to violations of the rule of satisfied triangles and may be
the source of spin glass behavior with a very low Tf ~ It
is also possible that the apparently nonergodic behavior,
which is observed experimentally, is simply a property of
the pure system at low T, as was proposed in Ref. [17].
If this is the case, then the new type of spin origami de-
scribed above will be a useful tool for understanding the
character of this low temperature state. Conversely we
note that the the spin origami mapping seems to contain
the essential ingredients for formulating a spin model of
tethered membranes of the type studied by Nelson and
co-workers [16], thus connecting the Kagome spin system

to a much broader range of physical problems.
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