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1/1V Expansion and Long Range Antiferromagnetic Order
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The staggered magnetization of the Heisenberg antiferromagnet in two dimensions can be system-
atically approximated by a 1/N expansion. Cancellation between self-energy diagrams leads to a
Luttinger-like theorem for the ground state. We prove (for a smooth enough self-energy) that the
long range order of mean field theory (N=oo) survives corrections to all orders of 1/N Dive. rgences
of this series provide a new route to the disordered phases of quantum antiferromagnets.
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In the study of quantum phase transitions, the order-
to-disorder transitions of the Heisenberg antiferromagnet
at zero temperature are particularly interesting. There is
also hope that understanding such transitions may pro-
vide insight into the electronic correlations of lanthanum
cuprates where under low doping, antiferromagnetism is
replaced by superconductivity.

The ground state of the Heisenberg antiferromagnet
in two dimensions can either have long range order or
be disordered by quantum fiuctuations [1]. Disorder-
ing can be induced by frustrating longer range inter-
actions, or perhaps by slight hole doping as suggested
by the phase diagram of lanthanum cuprates. In either
case, there are theoretical diKculties in describing the
transition itself. While semiclassical spin wave theory
works well deep in the ordered phase, it assumes sponta-
neously broken symmetry, and fails when the staggered
magnetization becomes small. The continuum approxi-
mation of the (2+1)-dimensional nonlinear sigma model
relies on perfect short range antiferromagnetic correla-
tions. Near the transition, however, the short range
correlations deteriorate considerably. This complicates
matters, since one needs to include field discontinuities
(e.g. , hedgehogs), and consider interference effects be-
tween their Berry phases [2].

The Schwinger boson (SB) large-N expansion [3] is a
rotationally symmetric formulation, which in principle
can treat both sides of the transition [4]. The mean field
theory (MFT) describes the excitations as a free Bose gas
of N decoupled Bavors. Bose condensation in this system
is equivalent to long range spin order [5]. However, MFT
is strictly valid only at N = oo, while the physically in-
teresting system is at N=2. A connection between the
two limits requires an understanding of the 1/N series.
Higher order corrections involve interactions between SB
which enforce the local constraints. However, finite N
corrections to the staggered magnetization have not yet
been evaluated. Before this could be done, it was neces-
sary to place the 1/N expansion on firmer footing, i.e. ,

to show that the higher order terms yield finite and sen-

sible results, which do not immediately destroy the mean
field ground state. Currently, we do not know whether
the long range order found in the MFT survives for any
N (oo.

This paper specifically addresses this concern. %"e

prove a theorem which establishes the 1/N expansion
as a consistent approach for the ground state of finite
N systems, starting from the MFT. Under a condition
that the self-energy is suKciently smooth at the order-
ing wave vectors, we prove that if there is long range
order in the MFT, the spontaneous staggered magnetiza-
tion does not vanish to all orders of the I/N expansion.
The proof uses a cancellation between self-energy dia-
grams and their tadpole counterparts, a feature special
to the 1/N expansion.

The result is reminiscent of (but not equivalent to)
Hugenholtz and Pines' self-energy condition for Bose con-
densed liquids [6]. It is closer in spirit to Luttinger s the-
orem for Fermi liquids [7]. The spontaneous staggered
magnetization is analogous to Luttinger's Fermi surface.
(Both appear as a discontinuity in the occupation num-
ber. ) In Luttinger's theorem, under a similar condition
on the self-energy, the Fermi surface discontinuity sur-
vives at each order in perturbation theory. Pushing this
analogy further, we shall propose that the vanishing of
the staggered magnetization at finite N may formally re-
semble one of the known Fermi surface instabilities.

For simplicity we discuss the nearest neighbor SU(N)
Heisenberg antiferromagnet. The proof actually utilizes
only general features of this model, and thus it is readily
extendable to more general Hamiltonians. The spins are
represented by N SB per site, a~ a~, where
m = (N —1)/2, and the Hamiltonian is given by

'8 = ——) (a, am~)m(aim' jma') h ) ma, ma, m.
(i,j) im

(i, j) are nearest neighbor bonds on the square lattice.
Summation over repeated indices is implicit, unless spec-
ified otherwise. The Hilbert space is constrained by the
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Z(h) = 'D(AQ) exp [
—NS(A, Q, tr)]. (2)

The explicit expression for the action 8 can be found
in Ref. [3]. Following [5), we consider the case of zero
temperature and large, but finite volume. The staggered
magnetization is given by

1
M = lim lim Tr rnG(k, m),

h, ~o+ phoo 2 V (3)

where 0 is the full Green function of SB. It is given
in the Nambu notation as a 2 x 2 matrix with normal
and anomalous components G„„(k,m) = (A„A; At,

A. ),
where Ai, = (ay~, a & ). P is the inverse tempera-
ture and V is the volume (number of lattice sites). We
denote k = (k, a), where k and w are lattice momen-
tum and Matsubara frequency, respectively. Tr includes
a trace over k, m, and the Nambu indices. G is evaluated

by summing all one-particle diagrams generated by the
large-N expansion of Eq. (2).

Let us briefly review the mean field results which were
derived previously [3, 5]. At large N, (2) is dominated

by the saddle point A, Q, and G is approximated by the
mean field Green function Go,

(„) A —i~ —hm

4Q&i
4Qpk

A+ iu) —hm) (4)

where pi, = ~(cosk + cosk„). The poles of Ge are at
the SB frequencies

~k~ = c 0„+ zh(m —m)+2(l —p„),

fixed SB number a,.~a,~ = Ns, at each site. 6 is an
infinitesimal ordering field. The generators of SU(N) are
given by a, c,~, where we use conjugated representa-
tions on opposite sublattices. For N = 2, Eq. (1) is
equivalent (up to a constant) to the Heisenberg model
X = ~ P,„iS, S, —h P, (-1)'S; [3].

Following the standard procedure [3), the partition
function can be written as a coherent states path inte-
gral. Hence one introduces real local fields A, to impose
the constraints, and Hubbard Stratonovich fields Q,~ to
decouple the quartic interactions.

After integrating out the SB field, we are left with

N —1 v2 N(N —1)
Mo =

V~
= s —0.1966. . .

(6)
which for N = 2 agrees with spin wave theory [5].

The higher order 1/N corrections to G are described
by diagrams which include lines for Go interacting via
propagators D (defined later) which are depicted as wig-

gly lines. A diagram which involves L loops (traces of
products of Go) and P propagators is of order (1/N)"
where p = P —L. One must exclude all diagrams which
include the segments shown in Fig. l. As shown in [3,8],
this leads to the fulfillment of the SB constraints at each
order of 1/N separately.

As in MFT, a nonzero staggered magnetization is re-
lated to the divergence of the number of SB with m =
m at k = k, . On the other hand, strictly at h = 0,
MFT is SU(N) rotationally invariant, so the Bose con-
densation is equally shared among the different m flavors
and the gap becomes Ae = NAhge. Henceforth we shall
set h = 0, and have exact degeneracy between the dif-
ferent flavors wk, . Thus, long range order is associated
with Bose condensation of all flavors at k, .

The self energy Z(k) (also a 2 x 2 matrix) is related
to G by the Dyson equation G = Ge —Z. In order
to proceed we must make an important assumption on
the smoothness of the self energy near the condensate
momenta:

lim l~(k) —~(k.)l = & (Ik —k. l' ') b&1,

where k, =—(k„0). Z should exhibit rotational symmetry
about k, as a consequence of the asymptotic "Lorentz
invariance" of Ge near k, . (The SB dispersion vanishes
linearly at k, .) We have verified that the leading order
self-energy is smooth at k, [i.e, , obeys (7) with b = 0].
We argue that the smoothness assumption is plausible
for models which have no pathology in the density of low
excitations. For such models, the integrations in Z are
uniformly convergent for all external momenta.

However, we have not proven Eq. (7) to all orders in

1/N, and we must regard it as an assumption; one which
requires a separate justification for any particular model.

where c = ~SQ and Ai, = c r/A2 —16Qz —2hAm

uk is minimized at the two points k, = (0, 77). At
those momenta, for m = m ~, the excitation gap is

cAh, . Solving the mean field equations yields Ah

~2/[NV(s —0.1966. . .)]. In the thermodynamic limit,
the SB with m = m and k = k, contribute macro-
scopically to the momentum sum; i.e. , they undergo Bose
condensation. This condensate is the only term which
survives the cancellation between positive and negative
m's in (3), yielding the mean field staggered magnetiza-
tion

.mme

everest

!,%I„ I' &

FIG. 1. Forbidden segments in 1/X expansion diagrams.
Solid lines represent mean field Green functions Go and vravy

lines, propagators of auxiliary fields D (see text).
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+ octad (9)

where Z~G" is the single tadpole diagrams (see Fig. 2),
and E are all the remaining diagrams. Although E and
E' " are expected to be of O(l) separately, we shall show
that at k = k, the O(1) contributions precisely cancel
in (8) leaving us with terms of O(V 2). Note that in
contrast to perturbation theory, the first and second terms
in Fig Shave. a different number of vertices, but are of
the same order in 1/N. This enables the cancellation
mechanism function at each order separately.

The rest of this discussion contains unavoidable tech-
nical details. The set of auxiliary fields is denoted by
(A~, RQ, ~, RQ~ ~, QQ, ~, QQ~ ~). A~ couples to the lo-
cal boson density and R(Q)Q, ~~~ ~ couple to the bi-

linear forms P. . . g,
'

[a a +, + (—)a&a~+,], where

=q,' =g," =1 and g," = —1. We

define

x 2 ver-
tices v which connect between a field o, and two Gp s.
Thus a zero momentum field o, is coupled to the form

Q& A&8& A)„where 8&~
——iI/2, 8&' ——(r*(cos k i cos k„),

and 8k' ——io (cos k~ + cos k„). Using 8, we can explic-
itly write Z' "(k,) (see Fig. 2) as

E' "(k,) = 2N8k D (0) ) Tr[8P Go(k)R(k)GO(k)],

(10)

The number of SB with momentum k, is ng

(2P) Q TrG(k„w), where Tr traces over IVambu in-

dices. This number diverges as ng V ifdet[G (k, )]
U ~. We use the Dyson equation and MFT relation

V to state that

6' = Eyy(k, ) —pg E)g(k, ) = O(V ) ~ M g 0;
(8)

i.e. , if the quantity 4 vanishes rapidly enough in the
thermodynamic limit, the ground state has long range
order. It may be shown that 6'(0) = 6'(F7).

Theorem: Under condition (7), Eq. (8) holds to all
orders in the 1/N series.

Proof: The self-energy is decomposed into two parts,

tad

FIG. 2. Diagrammatic representation of Eqs. (9) and (10)
for the self-energy. Z are all diagrams except the single tad-
pole diagrams. The cancellation between Z and the tadpole
diagrams allows the staggered magnetization to survive finite
N corrections.

where Pz ——
& Pk J'

2 . It may be seen that only
o, ,

a' = 1, 2 give nonvanishing contribution to this for-
mula.

Z(k) may be expanded as Z(k) = Z (k)uk, where
summation over n runs from 1 to 3, uk' ——vk' and
uk ——o'. The coefBcients of expansion satisfy the re-
lation 2 (0, 0) = E (v7, 0) and Zs(k, ) = 0. The same
expansion with u~ holds for B(k). 6' can now be writ-
ten as 6' = f~Z~(k, ), where f~ = i/2, fq ———2, and
f~=0, a)2.

The propogator in the 1/N expansion is given by the
matrix D = ~ (IIO —II), where

IIO' (q) = b' (1 —b'~ z) —,

II '
(q) = 2) Tr[8k&+~Go(k+ q)8k+~, kGO(k)1.

Using the relation XDII = —1+XDIIp, we find that at
k = k„Z(k, ) is canceled on the right-hand side of Eq.
(9) and we obtain

Z (k,) = —[Z(k.)G(k.)Z(k, )] + D '(0)R, (k,)

+2ND ' (0) ) Tk kk GD(k)kk Go(k) )
Z(k) E(k, )

1 —G (k, )Z(k, )) „)' (12)

where we have used the fact that E~~„" is independent of momentum.
The Bose condensation of Go(k, ) gives rise to the divergence of II(q = 0). Extracting the volume divergences in

(11) yields II (0) = f f~ (aV + bV) + P where a, b, and P are independent of volume. We see that both
order V and order U factorize, reflecting the emergence of a disconnected part in the correlation function due to
Bose condensation. Denoting P = IIp —P and inverting the polarization matrix we obtain the propagator to order
U —2.

'(0) = (P-')
fv(P &)v v' fv'— (P ') '~fsf~ (P ')~ '

aV2 [f'Y(P—&)'Y "f' f'Y']
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We now expand Z in a power series of 1/¹ Z
&Z("l. We shall prove Eq. (8) by induction. As-

sume that Eq. (8) holds for Z~"1,p & p. We take Z~+
on the left-hand side of Eq. (12), and multiply both sides
by the vector f . Using the Dyson equation for G, one
can show that f~[ZGZ] is proportional to 6', which,
however, should be calculated with Z"—". Therefore, this
term yields O(V ). Then, using (13), the terms of O(1)
in D get canceled by multiplying them on the left by f~,
leaving us with an overall factor of O(V 2). We must still
show that the second factor in the third term of (12) is
not divergent. Since the summand diverges as (A,

' —A:,)
(2 powers of the phase space minus 4 powers from Gp),
the momentum sum will converge if the self-energy obeys
condition (7). Thus, we have shown that Eq. (8) holds
to all orders in 1/N. Q.E.D.

We note that it is crucial for the cancellation, described
above, that the constraint has a local character and en-
forced by a fluctuating field. Indeed, this cancellation
does not take place if the constraint is imposed only on
average by a static chemical potential. On the other
hand, our proof can be readily extended to different spin
models with constrained Hilbert spaces. In particular
it applies to the t'- J model, a semiclassical approxima-
tion to holes in the quantum antiferromagnet [9). Also, a
simpler version of this theorem applies to the long range
order in resonating valence bond states [10],using a large-
N expansion of the Gutzwiller projection [8].

In practical terms, this theorem sets the foundation
for investigating the disordering transition using the 1/N
expansion of the self-energy. We can propose two sce-
narios for the disordering mechanism at finite ¹ (i)
Coupling of spins to soft charge fluctuations (holes) can
give rise to violation of (7), i.e. , a breakdown of our
theorem and a destruction of long range order. This
scenario is analogous to the one-dimensional Luttinger
model where the Fermi surface discontinuity vanishes due
to the large density of low excitations. (ii) The divergence
of V2 Q N "Z&") —+ oo may be detected in a partial
resummation scheme. (Tadpole counterterms must be
properly included, as shown above. ) A divergence for ex-
ample in nested diagrams, formally resembles the Cooper
channel (superconductivity) instability in a Fermi liquid.

In summary, we have analyzed the corrections to the
mean field ground state staggered magnetization of the
two-dimensional antiferromagnetic Heisenberg model.
We found an important cancellation mechanism between

self-energy diagrams. This establishes that the 1/N ex-
pansion for the order parameter is a consistent asymp-
totic approach for finite N models. It is similar to per-
turbation theory about a noninteracting Fermi surface.
We argue that the quantum disordering transition may
be detected as a breakdown of the assumptions of this
theorem, or a divergence in the 1/N series. These possi-
bilities are worth further investigations.
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