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Variable Range Hopping as the Mechanism of the Conductivity Peak Broadening
in the Quantum Hall Regime
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We argue that it is the hopping transport that is responsible for broadening of the cr peaks.
An explicit expression for the width Av of the peak as a function of the temperature T is found.
A close relation between the characteristic temperature in the dependence Av on T and that in
the variable-range-hopping exponent at an integer v is established. Broadening of the peak with
increasing current is also explained. The current J is shown to act like the effective temperature
T ff oc J if T,ff » T. The anomalous behavior of two peaks which are close to each other (spin
split, e.g. ) is considered.

PACS numbers: 73.40.Hm

The integer quantum Hall effect in a disordered two-
dimensional electron gas manifests itself more clearly the
lower the temperature T. The steps connecting adjacent
plateaus in the dependence of the Hall conductance o'»
on the filling factor v narrow with decreasing T and so
do the peaks in the longitudinal conductance cr ~. In a
number of experiments [1—7] a remarkable result has been
obtained: the width Av of the peaks shrinks as T —+ 0 ac-
cording to a power law Ev oc T". The exponent v. 0.4
was found in Refs. [1,2] to be universal; neither the Lan-
dau level index nor the electron mobility is relevant at low
temperatures. The measurements have been performed
down to. temperatures as low as a few tens of millikelvins,
thus giving a definite indication that extended electron
states exist at only one energy within the broadened Lan-
dau level. Other states should be localized. Although the
question as to the nature of the localization still remains
unresolved, various computer simulations [8—12] strongly
support this concept yielding the power-law divergence
of the localization length ((E) oc ~E~ ~, p 2.3, as the
electron energy E approaches the Landau level center
(E = 0). Recently, the same value of p has been directly
measured by studying how Lv scales with the sample
size in the low Tlimit [4]. -

The conventional explanation of the scaling depen-
dence Av oc T" is as follows [8, 13]. It is assumed that at
a finite temperature there exists a phase-coherence length
I y which is shorter the higher T is. One believes that if
L y (( ((E~), E~ being the Fermi energy, the localization
is destroyed and the electron system exhibits metallic be-
havior. Similar to the theory of weak localization [14,15],
I@ is expressed in terms of the di6'usion coeKcient D and
the phase-breaking time r~. I~ (Dry)i/~. The time
~y is made to be proportional to T "with the exponent
p which depends on the inelastic-scattering mechanism.
These arguments lead to the conclusion that the width of
the conducting energy band vanishes with decreasing T
as T"/~ r, so that r = p/2p (to describe the experimental
data in this way, one has to admit that p 2).

e2
Tp(v) = C (2)

((v) is the localization radius of the states on the Fermi
level for a given v, c is the dielectric constant, and C 6
in two dimensions [18]. This temperature dependence
was observed in the middle of the Hall plateaus [19,20].
Note that Ono [21] also derived Eq. (1) (with a different
expression for Tp) assuming a finite density of states at
the Fermi level and using unperturbed wave functions

4Aof isolated impurities g(p) oc e «4~, where A is the
magnetic length. It is known [22], however, that tails of
wave functions are actually of a simple exponential form
e ~/~ due to multiple scattering of a tunneling electron.
Together with the Coulomb gap in the density of states
this results in Eqs. (1),(2). As mentioned above, the
length ((v) diverges as v approaches a half-integer vp.

Correspondingly, the value of T0 tends to zero as v ~ v0.
Hence, at a given temperature, there should exist a spe-

Although such an approach looks very attractive, in-

troducing the phase-breaking time to account for the
temperature-induced delocalization at o e /h is not
obvious. There is no generally accepted theory for 7.

y in
the quantum Hall regime. Here we would like to suggest
an explanation of the scaling behavior Av(T) in terms
of the strong localization (approaching a peak from the
region where o (( e /h). We start with the notion
that the only possible mechanism of transport in the
strongly localized electron system is hopping. It is known
that predominant in the low-temperature limit is variable
range hopping. In this regime, due to the existence of the
Coulomb gap, the temperature dependence of o.~ should
have the forin [16, 17]
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cific value of v at which the exponential factor in Eq. (1)
becomes unity. It is natural to assume that it is the differ-
ence between this value and vp that determines the width
Av of the peak. In this case, solving equation Tp(v) = T
with the use of the relations (2),(3) immediately yields a
power-law dependence of Lv on T:

(4)

with K = 1/p and

g2
Tg ——C

s(p
(5)

For p = 2.3 we arrive at the experimental value z 0.4.
As for the characteristic temperature Ti, to our knowl-

edge, it is the first time an explicit expression for Ti is
given. Note that Ti is of the order of Tp in the mid-
dle of an adjacent plateau. To compare with what is
experimentally observed, we should define the elemen-
tary length (p depending on the properties of a random
potential. Provided the potential fluctuations are short
range, so that their correlation radius is less than or of
the order of the magnetic length A, one may expect that
(p for the lowest Landau levels is A. One believes that
fluctuations of this kind are realized in InGaAs/InP het-
erostructures, the experiment on which [1] most clearly
confirms the universality of the exponent K. To Gnd Ti,
we extract Av from the data presented in Ref. [1] ac-
cording to the formula Ap»/Av = (dp „/dB)~ (B/v)
Here Ap „and (dp»/dB)~ ~ stand for the total change
in the Hall resistance p» on passing the transition region
and for the maximum value of its derivative with respect
to the magnetic Geld correspondingly. The value of Ti
obtained this way is 320 K for v =

2 (the N = 0 $
Landau level). Substituting then A for (p in Eq. (5) we
find C 2. This value is only 3 times lower than the
rough estimate [18] based on the one-electron picture of
hopping. The discrepancy may be related with the di-
electric constant enhancement in the critical region of
the metal-insulator transition. It should be noted, how-

ever, that when the steps at v =
&

and 2 (the spin-split
N = 1 level) are treated in the same way, Ti 22 K is
obtained. This temperature is much smaller than what
one could expect according to Eq. (5) with (p ~ A and
C 2. It is worth comparing Ti 22 K with the mea-
sured value of Tp for hopping at v = 3 which was found
to be 7.8 K for similar samples [20]. This value is of the
same order of magnitude as Ti and also much less than
what would be expected from Eq. (2). The fact that both
the characteristic temperatures for the spin-split N = 1
level are so small probably indicates that the length (p
for this level is in fact much larger than A. We will return
to this puzzle below.

The suggested approach permits us to elucidate yet an-
other interesting phenomenon observed at very low tem-
peratures. It was found in Refs. [4, 23] that the width

Av of the cr~ peaks grows with increasing current J,
i.e. , with the increase of the Hall electric field SH. I et
us show that the dependence Av(ZH) can be understood
in terms of the theory of hopping in a strong electric
field [24, 25]. This theory is based on the fact that there
exists a quasi-Fermi level inclined by the electric field
E'. Zero-temperature hopping with phonon emission then
becomes possible and, even though there are no absorp-
tion processes, the local Fermi distribution with an eKec-
tive temperature eF$ is formed [24, 25]. On this ac-
count, the exponent of the current-voltage characteristics
at T = 0 may be obtained from that of the Ohmic con-
ductivity by replacing T —+ eF(/2. If the Ohmic trans-
port obeys the law (1), the zero-temperature conductivity
should behave with increasing electric field as

—(2r&/~s'~ g}0» = OpC (6)

(7)

where o, = 1/2p = K/2. Comparing Eqs. (7) and (4),(5)
one can notice that the field tll leads to the same broad-
ening of the peak as if there was the temperature

3 1/2

ff k2 ) a (8)

This relation is remarkably universal: it contains only one
parameter of the sample, its dielectric constant e. The
sensitivity of Av to ZH may be viewed as due to heating
in the critical region of the metal-insulator transition. In
this connection note the unusual square-root dependence
of T,ff on SH. The increase in Av with F~ was clearly
observed in Refs. [4, 23]; however, no treatment in terms
of power dependences was presented. Our analysis of the
lowest temperature data of both the experiments shows
that they can indeed be described by introducing T,ff oc

~1/20
The third phenomenon we would like to mention here

is the saturation of Av with decreasing T or ZH in small
samples. It is experimentally established [4] that a 0.

peak stops narrowing as T lowers down to a characteris-
tic temperature T2 which depends on the sample size L.
To evaluate T2, we follow Ref. [4] and equate I and the
localization length at Av = (Tq/Ti)". As a result, T2
turns out to be e2/E:I, and the corresponding width
Av ((p/L)". It has been shown above that ((v) may
be governed by the Hall electric field, too. Therefore, one
should expect the saturation with decreasing EH at the
same value of Lv if T (& T2. We find that the character-
istic Hall field in which this occurs is (FH)2 e/E;L

Now let us look more closely at the starting point of our

Similarly to the case of Ohmic conductivity the width of
the cr peak is found from the equation 2Tp($) = eFH$.
Solving this equation for g we get ( = (2Ce/sFH) f,
which yields
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theory: the conductivity o on both sides of the peak
was claimed to be due to variable range hopping (1). The
question is, Can activation to the extended states exist-
ing in the middle of the Landau level compete with the
variable range hopping? We argue that it cannot. To
make sure of this, we first consider a single Landau level
of the width I' which is much smaller than the energy
distances to the adjacent levels. For example, such is
the N = 0 $ level in the experiments on InGaAs/InP
[20] and GaAs/GaAlAs [19,26] samples. Let us compare
the contributions to the conductivity from activation and
variable range hopping provided the Fermi level is sepa-
rated from the center of the Landau level by its width I'.
Note that we consider low-mobility samples that do not
display the fractional quantum Hall eKect. Therefore, the
characteristic Coulomb energy O. le~/cA is supposed to
be small as compared with I'. In that case, the contri-
bution from activation is given by lno» I'/T w—hile

that from hopping by incr ~ —[(e2/cA)/T]i~2. It is
clear that hopping dominates not only at T —+ 0, which
is usual, but even at T of the order of the Coulomb en-
ergy (at which temperature Av 1). Now it is easy to
understand that if the Fermi level is closer to the Lan-
dau band center the conditions are still more favorable
to hopping because ((v) grows rapidly with decreasing
lv —vol. It can then be shown in the same way that hop-
ping with an energy transfer larger than [TTO(v)] ~, the
typical transfer according to Eq. (1), is also of no impor-
tance. Hence, dominant everywhere inside the peak of
the density of states (and outside the cr» peak) is vari-
able range hopping near the Fermi level. In other words,
we conclude that the width I' [T/(e /sA)]" of the energy
band corresponding to lv —vol & 4v is always much
greater than T.

Let us turn to the question about the conductivity
when the Fermi level lies in the gap between the Lan-
dau levels. In wide gaps, some approximately constant
"background" in the density of states is observed [26, 27].
However, it is an experimental fact that the fraction of
the total density of states corresponding to the gap is
small [26, 27]. Therefore, the Fermi level may lie in the
gap only if v is very close to an integer. Since the density
of states is small, the average distance between the gap
states is much larger than their localization radius. It fol-
lows that hopping near the Fermi level cannot compete
at high enough T with hopping associated with activa-
tion to the states in the peak of the density of states.
Such an activation-type conduction has been studied in
Refs. [26, 27]. As T goes down, the concentration of elec-
trons activated to the bottom of the peak of the density
of states decreases rapidly and hopping near the Fermi
level becomes dominating. For v = 2 it happens at T & 1
K both for InGaAs/InP [20] and GaAs/GaAIAs [19,26].
Thus, the activation-type conductivity does exist in the
wide energy gaps but only at high temperatures and in
a narrow range of v around an integer, for which reason

it does not inHuence our estimate of Lv.
For the Landau levels with large N, the spin-split lev-

els, or for the levels corresponding to mixed states in
double quantum wells, the 0» peaks are observed in the
magnetic fields that may not be sufficient to form gaps in
the density of states. So the Landau levels overlap while
the cr~ peaks may not. In this case, variable range hop-
ping near the Fermi level should be the only mechanism
of conduction at any v and T. This is confirmed by the
fact that the conductivity at v = 3, 4, 6, 8, 10, 12 obeys
the law (1) even for the highest temperatures [19, 20].
However, rather small values of To are observed for these
narrow gaps, e.g. , for the gap which separates the centers
of the N = 1 $ and N = 1 $ levels. Our approach enables
us to relate this fact with another striking phenomenon
reported in Ref. [28]: if the only o» peak corresponds
to the N = 1 level, i.e. , its spin splitting is not resolved,
the width of the peak follows T"/ instead of T" as for
each of the f and $ peaks taken separately. The same
phenomenon was observed also for the unsplit N = 2
level [29]. Moreover, according to direct measurements
[29], the localization length exponent in the latter case is
much greater than 2.3.

In our picture, the only thing that may account for
the change of the exponent in the dependence Av(T) is
a stronger divergence of the localization length as com-
pared with Eq. (3). For example, the value of ( for the
N = j. level should behave as

Av = (T/T,')'~ ~, T,' e /s(0. (10)

It follows that the same temperature e2/E(o is charac-
teristic for both the single and unsplit levels [compare
Eqs. (5),(10)]. It would be important to verify this result
experimentally. As the Fermi level approaches closely the
center of any of the two Landau levels, ((v) must diverge
with the usual exponent. Therefore, when lv —3l becomes

Eg/I' « 1, E~ being the energy distance between the
centers of the levels, one should expect a crossover from
the dependence (10) to that which is similar to (3) but
with much larger "elementary length" Q = (o(I'/Eg)~
resulted from matching in the crossover point. The di-
vergence of ((v) should take place at v = 3 + bv, where
bv E~/I'. Thus, our conjecture is that the localization
length behaves as follows:

r'g-A. . . , E, « I',

where the energy E is reckoned from the middle of the

(9)

[if two levels overlap strongly, the values of v correspond-
ing to the extended states are close to an integer in
contrast to a half-integer in Eq. (3)]. By analogy with
the derivation of Eqs. (4),(5), this assumption yields the
width of the unsplit level
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gap. At E = 0 we get g A(I'/Es)2~ )) A. This set-
tles the puzzle as to the large value of (o mentioned in
the discussion following Eq. (5). If the two cT» peaks
are resolved and the hopping conductivity in the mid-
dle between them is observed, the value of To should be
strongly reduced in comparison with that for large gaps:

e2 (Es
To - —

Ist&I' (12)

This equation also gives the characteristic temperature
at which the two peaks merge.

We think that the theory presented in this paper may
be valid also for the case of a long-range random poten-
tial, but only if Av « (A/R), where B )) A denotes
the correlation radius of the potential Buctuations. In
such a potential, the one-particle localization is classical
at ]E] )) E, I'(A/R) and, consequently, Av T/I" at
T &&E,.

Recently, a remarkable observation of the scaling be-
havior Av oc T" in the fractional quantum Hall regime
has been reported [3, 30]. According to Ref. [30], the ex-
ponent v 0.4 is the same as for the integer quantum
Hall effect. This gives an indication that our results may
be applicable to the fractional regime, too. If that is the
case, the characteristic temperatures Tq and To contain
the fractional charges and so should be much smaller than
those for the integer effect. The experimental values of
T& and To are actually very small [30, 31].

We are not aware of any published results of the direct
measurements of the variable-range-hopping conductiv-
ity away from the centers of the gaps. To verify this
theory, it would be useful to study the temperature de-
pendence of o. in the whole range of v. Provided it is
described by Eq. (1), one could try to fit the dependence
To on [v —vo] by the power law To oc ]v —vo]~. Our
prediction is that the exponent P is equal to r where
r. determines the temperature dependence of the width
of the o. peaks.
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