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We calculate properties of neutron star matter at subnuclear densities using an improved nuclear
Hamiltonian. Nuclei disappear and the matter becomes uniform at a density of about 0.6n„where
n, = 0.16 fm is the saturation density of nuclear matter. As a consequence the mass of matter in
the crusts of neutron stars is only about half as large as previously estimated. In about half of that
crustal mass, nuclear matter occurs in shapes very difFerent from the roughly spherical nuclei familiar
at lower densities. The thinner crust and the unusual nuclear shapes have important consequences
for theories of the rotational and thermal evolution of neutron stars, especially theories of glitches.

PACS numbers: 97.60.Jd, 21.65.+f

Above a density of about 3x10ii g cm a matter in neu-
tron stars consists of a matrix of nuclei immersed in a sea
of neutrons and a roughly uniform sea of electrons. When
the density of matter approaches that of nuclear matter,
the nuclei merge to form a uniform liquid of neutrons,
protons, and electrons. In this Letter we calculate the
equation of state of matter in this region, and consider
how, and at what density, the transition from roughly
spherical nuclei at low densities to the uniform matter
takes place.

Long ago it was pointed out [1] that when nuclei in
dense matter occupy more than half of space, it is ener-
getically favorable for them to turn inside out, since in
that way the surface and Coulomb energies can be re-
duced. This idea was developed further, especially in the
context of stellar collapse, and it was demonstrated that
as the fraction of space, u, occupied by nuclear matter
and the mass density increase there is a series of transi-
tions. With increasing density, nuclear matter, at first
approximately spherical drops, becomes rodlike struc-
tures ("spaghetti"), and then platelike ones ("lasagna" ).
For u greater than about 0.5, the nuclear shapes are simi-
lar to those for lower fillings, but with the role of nuclear
matter and neutrons interchanged [2—4]. This picture,
which was first proposed on the basis of a liquid-drop
model of the nucleus [2—4], has been confirmed and elab-
orated on by calculations using the differential Thomas-
Fermi approximation [5, 6].

We have calculated the properties of matter using a
compressible liquid-drop model [7] whose basic ingredi-
ents are the energy densities of nuclear matter and neu-
tron rnatter, together with the interfacial energy between
nuclear and neutron matter. To ensure that the proper-
ties of nuclear and neutron matter are treated consis-
tently, we use for the energies of bulk nuclear and neu-
tron matter the same function of the neutron and proton
densities. The interfacial energy is calculated with the
same microscopic Hamiltonian as is used for obtaining
bulk properties. We have also calculated curvature con-
tributions to the interfacial energy. These play a larger
role in neutron stars than in stellar collapse since the

interface between nuclear matter and neutron matter is
more diffuse than the surfaces of laboratory nuclei.

The key ingredient in the calculations is the micro-
scopic interaction Hamiltonian. The free energy of
uniform-density nuclear and neutron matter has been
calculated by Friedman and Pandharipande [8], who em-
ployed the microscopic V14 two- and TNI three-body nu-
cleon forces, used hypernetted chain techniques, and con-
sidered a range of densities and temperatures. The mi-
croscopic interaction we favor, here called FPS, has been
obtained by fitting [9] a Skyrme-like energy-density func-
tional to their values [10]. The assumption basic to the
Skyrme model, that the effective interaction has the spa-
tial character of a (possibly density dependent) two-body
delta function plus derivatives, then leads to a specifica-
tion of the Hamiltonian even for a system with spatially
varying density. As a stringent test of this assumption
we have calculated [11] in the Hartree-Fock approxirna-
tion the ground-state energies of a group of eight doubly
closed-shell spherical nuclei ranging from 0 to Pb.
The rms deviations from experiment of the energy per nu-
cleon for the three forces Skyrme 1' [12], SKM [13], and
FPS are, respectively, 151, 94, and 42 keV. Thus our FPS
Skyrme interaction reproduces remarkably well, with no
adjustments, the ground-state energies of stable nuclei.
This somewhat unexpected result suggests that the de-
duced terms in the Hamiltonian proportional to density
gradients, which are needed to describe the nuclear sur-
face, are not unrealistic, and that they can also be used
to explore the properties of inhomogeneous matter with
very small proton fractions, in the density range up to
nuclear saturation density. The new numerical results
we present are those obtained with the FPS interaction,
although the 1' results agree quite closely with them.

To investigate the nonspherical phases of neutron star
matter we have used a compressible liquid-drop model
based on the form described earlier [7]. The sample
of matter considered is a Wigner-Seitz cell of appropri-
ate shape (spherical, cylindrical, or planar) containing a
dense nucleus surrounded by a nucleon vapor and enough
electrons to be electrically neutral. For matter closer to
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symmetrical nuclear matter the more elaborate Thomas-
Fermi calculations [5, 6] lead to qualitative conclusions
similar to those based on the simple model. We expect a
similar result to apply here, so the simple model should
be adequate for initial investigations [14]. The Hamilto-
nian density of the Skyrme interaction chosen gives di-
rectly the volume or bulk energy of the nucleons in the
cell. The interface energy and its curvature correction are
calculated [15] in the Hartree-Fock approximation. In the
electron contribution to the total energy, screening has
been included, also exchange and surface diffuseness cor-
rections to the Coulomb energy. At a given temperature
T and density n, with the assumption of beta equilibrium
and zero neutrino density, thermodynamic equilibrium
determines all of the other dimensions and properties of
the cell and of the matter. It also determines which of
the geometries (spheres, cylinders, or plates, the former
two as nuclei or as bubbles) is energetically favored.

In Fig. 1 are shown energy differences from the two-
fluid phase for the various geometries, as a function of
baryon density, for the FPS and SKM equations of state.
The one-Quid curve for each equation of state thus repre-
sents the bulk energy to be gained by a phase separation,
and the curves for each specified geometry give the ad-
ditional surface plus Coulomb energy required when the
phases are separated. The intersections of the curves sig-
nal approximately the phase changes. The phase transi-
tion between one nuclear shape and another is flrst order,
and for the FPS force the change from spherical to cylin-
drical shape occurs at n = 0.064 fm 3, as Fig. 1 shows,
with a density jump of approximately 0.0001 fm . A
particularly interesting prediction of our calculations is
that the dissolution of nuclei, and the adoption of a uni-
form fluid form, occurs at a density n = 0.096 fm
which is only 60'%%uo of the density of symmetrical nuclear
matter. (The possibility that the phase boundary occurs
at a density well below n„even without the invocation
of nonspherical phases, was suggested some time ago [7].)

The results shown in Fig. 1 illustrate the consider-
able difference in bulk properties between FPS and SKM
(the interaction used by Bonche and Vautherin [16] in
their dense-rnatter explorations) for this very neutron-
rich matter. One sees that for SKM, the energy differ-
ences due to surface and Coulomb energies for the three-,
two-, and one-dimensional nuclear phases are larger than,
but of the same order as, those for FPS. The one-fluid
matter becomes energetically favorable at densities much
too small for the G.lling fraction to approach 0.5, the value
needed for the bubble phases to be calculable. From a de-
tailed examination of the pure neutron results, it appears
that the adjustment made in SKM to fit the Siemens-
Pandharipande neutron matter was made for the chemi-
cal potential of the proton, not that of the neutron. For
the phase equilibrium involved, however, it is the neutron
chemical potential that is important. In ordinary Skyrme
forces such as this one, there is insufhcient Qexibility to
flt both quantities, a deficiency that is overcome in the
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I IG. 1. Energies per unit volume as a function of den-
sity for the one-fluid phase, and the three-, two-, and one-
dimensional nucleus phases, with (for FPS) the bubble (in-
verted structure) versions of the first two, after subtraction
of the energy of the two-fluid phase, neglecting Coulomb and
interface eBects. The two nuclear interactions illustrated are
SKM [6] and the version of FPS [8, 9] described in the text.

Skyrme version of FPS.
For examining the consequences of these new phases, a

brief note of their properties may be useful. We give the
radii of the squared-off proton distribution and, in paren-
theses, of the Wigner-Seitz cell [7]; in square brackets we
give the mean proton and neutron densities, in fm: 3D
nuclei at the phase boundary, 8.7 fm (19.2 frn) [0.0021,
0.062]; 2D nuclei, 5.9 fm (15.2 fm) [0.0023, 0.068]; 1D
nuclei, 3.1 fm (11.2 fm) (these are half of the diameter)
[0.0030, 0.082]; 2D bubbles, 10.0 fm (13.0 fm) [0.0033,
0.088]; 3D bubbles at the boundary with uniform matter,
10.3 frn (13.4 fm) [0.0035, 0.092]. Except where noted,
these are values at the midpoints of the density range
where that phase is the most stable one.

Shown in Fig. 2 is a density proflle of the crust of
a neutron star obtained using these FPS results in the
TOV equations [17]. (The model has a central density
of 0.726 fm, i.e. , 4.5n„and other properties listed in
Table I.) Because of the rapid decrease of the density in
the crust region, the crustal mass, defined as the mat-
ter exterior to the uniform fluid, depends strongly on
the density at which the transition to the uniform-fluid
phase occurs. Our conclusion that the transition density
is only about 0.6n, implies that the amount of crustal
matter in neutron stars is considerably less than that
calculated [18] on the assumption that nuclei dissolve at
approximately nuclear matter density, as found by Baym,
Bethe, and Pethick (BBP) [1]. To explore the extent of
the effect, we compare the FPS results with those of the
other interactions we have mentioned. To do this cleanly
it is convenient to consider models with the same mass
and radius. (We give later the scaling properties of the
crust when those quantities are changed. ) To achieve this
objective, the equation of state of BBP [1], continued be-
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TABLE I. Radii, mass fractions in the crust, moments of
inertia I, and their fractions in the crust, of a neutron star of
mass M = 1.445Mo. The row headed AM, is the mass of all
of the material exterior to the fluid core. AMq is the part of
it that consists of dripped neutrons. AM„ is the total mass
that is in the form of solid matter with nonspherical nuclei,
and AMg„ is the part of that material that consists of dripped
neutrons. The subscripts apply in the same way to the frac-
tions of the moment of inertia I. The three interactions used
are a BBP composite [1], SKM [6], and the version of FPS [8,
9] described in the text. The radius units are km, the mass
units are Mo, and the units of I are Mo km . In parentheses
are the fractional amounts.

Force BBP SKM FPS
0.2 0.4

ar([~)
FIG. 2. Profile of a neutron star crust as given by FPS [8,

9]. The distance (in km) is measured from the surface. The
solid line is density p/m„, in fm, and the dashed line is
pressure, in MeV fm, plotted logarithmically. Vertical lines
indicate the phase boundaries described in the text. At the
top is shown the superfluid energy gap [22].

low neutron drip by the results of Baym, Pethick, and
Sutherland [19],has been supplemented at high densities
by FPS. The radii and crust masses of the star models
for this composite model, for FPS, and for SKM, all of
which have had central densities adjusted to give masses
of 1.445MO, are given in Table I. The crust transition
densities used are 0.14 fm for BBP [1], 0.0725 frn

for SKM (see Fig. 1), and 0.0957 fm s for the present
work with FPS (see Fig. 1).

As can be seen from Table I, the crustal mass of the
neutron star models given by the FPS interaction is
about a factor of 2 smaller than that of BBP. This is also
the case for the mass of "dripped" neutrons surrounding
nuclei in the crust. Another surprising result is that, for
the FPS interaction, matter with nuclei in nonspherical
shapes makes up half the mass of the crust.

In a number of theories of glitches in the periods of
neutron stars the magnitudes of contributions to the mo-
ment of inertia play an important role, and some of these
are given in Table I. Again the results for the FPS inter-
action are smaller than the BBP ones by a factor of 2. It
remains to be seen whether models which invoke pinning,
by nuclei, of vortices in a superfluid neutron liquid are
viable when the moments of inertia of the superfluid neu-
trons are so small. The phenomenological requirements
on /t I~/I, the fraction of dripped neutrons in the crust,
obtained by Alpar et at. [20], are larger than those given
by FPS by almost a factor of 2, in line with star models
resembling BBP.

The crust properties we have presented, which were
obtained by solving the full TOV equations [17], can be
scaled for use with other neutron star models that give
different total masses and radii. The crust is thin and
contains little of the total mass, so that the TOV pressure

R
AM,
AMg
AM„
AMg„

I
AI
AIg
AI„
AIg„

10.49
0.0299 (2.07%%uo)

0.0242 (1.67%%uo)

61.56
2.74 (4.45%)
2.22 (3.60%)

10.78
0.0122 (0.84%)
0.0103 (0.71%)

60.89
1.21 (1.99%)
1.02 (1.68%%uo)

10.79
0.0125 (0.86'%%uo)

0.0084 (0.58%)
0.0062 (0.43%)
0.0051 (0.35%)

62.57
1.22 (1.94%%uo)

0.82 (1.32%)
0.59 (0.94%)
0.48 (0.77%)

pa 4~a4
AM„„st 47r R p(r) dr P~,|MA (2)

where p~ and PI3 are the density and pressure at the
phase boundary defining the crust. Thus for models
with difFerent interiors, and difFerent masses and radii,
the crustal mass ratios given here scale like R4/AM2.
Also, the amount of matter exterior to a given density is
proportional to the pressure at that density. This pro-
vides an easy way to estimate the efFect on the crust mass
of moving its assumed boundary. From the general rel-
ativistic equations [21] a similar approximation may be
obtained for the moment of inertia of the crust and its
constituent parts:

2 2 1 —2GI/Rsc2
&Icrust —

3 ™crust&
GM/& 2

~ (3)

The efFects of the nonspherical nuclei on microscopic
properties of crustal matter have yet to be investigated.
They could well influence significantly pinning of super-
fluid neutron vortices to nuclei. The superfiuid energy
gap appropriate to the dripped neutron density, as cal-
culateci by Wambach, Ainsworth, and Pines [22], does
overlap the nonspherical phases as shown in Fig. 2.

Neutrino generation processes, which are important

equation can be approximated as

BP pGMA
Br R2

where A = (1 —2GM/Rcs) is the redshift factor. The
crust mass can therefore be written as
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for understanding cooling of neutron stars, need to be
reinvestigated without the usual assumption of spheri-
cal nuclei. On the basis of standard treatments of the
neutrino-antineutrino pair bremsstrahlung one might ex-
pect this process to be affected by the unusual nuclear
shapes. However, recent work has shown that if one al-
lows for electron-lattice interactions to all orders in per-
turbation theory, bremsstrahlung by electrons moving in
a perfect lattice is strongly suppressed compared with
earlier estimates, and this result does not depend on the
shape of the nuclei [23]. Another possibility is that some
version of the direct URCA process might be allowed in
spaghetti or lasagna nuclei as a consequence of protons
having a continuous spectrum at the Fermi surface, and
of the fact that umklapp scattering processes from the
lattice might allow momentum conservation to be satis-
fied.

Our calculations demonstrate that nuclear models that
give similar results for laboratory nuclei do not neces-
sarily do so for the much more neutron-rich conditions
in neutron stars. This provides a strong stimulus for
laboratory studies of very neutron-rich nuclei, including
those that will become accessible with the development
of radioactive-beam facilities. Data on such nuclei will be
important in refining nuclear models that can be applied
to neutron star conditions.

We thank G. Baym, S. Pieper, D. Pines, J. Wambach,
R. B. Wiringa, and especially V. R. Pandharipande for
much useful advice. We are also grateful to Armen
Sedrakian for drawing our attention to Refs. [3, 4, 14].
This work was supported in part by the National Science
Foundation under Grants No. NSF PHY 89-21025 and
No. NSF PHY 91-00283, and NASA Grant No. NAGW-
1583.

Present address: Parkland College, Champaign, IL
61821.
Also at NORDITA, Blegdamsvej 17, DK-2100 Copen-
hagen 0, Denmark.

[1] G. Baym, H. A. Bethe, and C. J. Pethick, Nucl. Phys.
A175, 225 (1971).

[2] D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Phys.
Rev. Lett. 50, 2066 (1983).

[3] M. Hashimoto, H. Seki, and M. Y'amada, Prog. Theor.
Phys. 7l, 320 (1984).

[4] K. Oyamatsu, M. Hashimoto, and M. Yamada, Prog.
Theor. Phys. 72, 373 (1984).

[5] R. D. Williams and S. E. Koonin, Nucl. Phys. A435, 844
(1985).

[6]

[7]

[8]

[10]

[11]
[»]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

M, Lassaut, H. Flocard, P. Bonche, P. H. Heenen, and
E. Suraud, Astron. Astrophys. 183, L3 (1987).
A comprehensive account of this model and its an-
tecedents is given in J. M. Lattimer, C. J. Pethick,
D. G. Ravenhall, and D. Q. Lamb, Nucl. Phys. A432,
646 (1985).
B. Friedman and V. R. Pandharipande, Nucl. Phys.
A361, 502 (1981).
V. R. Pandharipande and D. G. Ravenhall, in Proceedings
of the NATO Advanced Research Workshop on Nuclear
Matter and Heavy Ion Collisions, les Houches, 1989,
edited by M. Soyeur et al. (Plenum, New York, 1989),
p. 103. The interaction used here is that given on p. 116,
with the modification pqp/p ~ pqp/pp discussed on p.
117.
We are aware of, and appreciative of, the more recent
examination of this problem by R. B. Wiringa, V. Fiks,
and A. Fabrocini, Phys. Rev. C 38, 1010 (1988). While
their treatment of matter at high densities is more fun-
damental and complete than that of Ref. [8], no attempt
was made to adjust precisely the nuclear saturation con-
ditions, and since it is the behavior of matter at densities
up to (but not beyond) n, that we are concerned with
here, we have used the results of Ref. [8].
D. G. Ravenhall and C. P. Lorenz (to be published).
D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626
(1972), modified [7] to fit the earlier calculations of
P. J. Siemens and V. R. Pandharipande, Nucl. Phys.
A73, 561 (1971).
H. Krivine, J. Treiner, and O. Bohigas, Nucl. Phys.
A336, 155 (1980).
Similar results have been reported, on the basis of a
cruder representation of FP and a variational approach,
by K. Oyamatsu, in Unstable Nuclei in Astrophysics, Pro-
ceedings of the International Workshop, Tokyo, 7—8 June
1991, edited by S. Kubono and T. Kajino (World Scien-
tific, Singapore, 1992), p. 320.
C. P. Lorenz, Ph. D. thesis, University of Illinois, 1991
(unpublished) .
P. Bonehe and D. Vautherin, Nucl. Phys. A372, 496
(1981); Astron. Astrophys 112, 2.68 (1982).
See, for example, S. L. Shapiro and S. A. Teukolsky,
Black Holes, White Dwarfs and Neutron Stars (Wiley,
New York, 1983), p. 125.
V. R. Pandharipande, D. Pines, and R. A. Smith, Astro-
phys. J. 208, 550 (1976).
G. Baym, C. J. Pethick, and P. Sutherland, Astrophys.
J. 170, 299 (1971).
M. A. Alpar, H. F. Chau, K. S. Cheung, and D. Pines,
Astrophys. J. (to be published).
J. B. Hartle, Astrophys. J. 150, 1005 (1967).
J. Wambach, T. L. Ainsworth, and D. Pines, Nucl. Phys.
A (to be published) (Migdal Memorial Issue).
C. J. Pethick and V. Thorsson (to be published).

382


