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Generalized Hard-Core Fermions in One Dimension: An Exactly Solvable Luttinger Liquid
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(Received 1 April 1993)

A model for interacting spinless fermions in one dimension is presented and solved exactly. The solu-
tion is shown to be a Luttinger liquid with charge density wave instabilities for well characterized filling
factors. Under very plausible assumptions, the exact solution is extended to the spin case with the usual
charge-spin separation into two diAerent Luttinger liquids. Required technicalities are almost trivial but
the solution is very rich: Periodicity of instabilities and correlation exponents can be chosen at will.

PACS numbers: 71.45.Lr, 71.10,+x, 72. 15.Nj, 75.10.Jm

One-dimensional (I D) models provide examples of tru-
ly interacting systems for which exact solutions can be
constructed [I]. Beyond being relevant for an increasing
number of quasi-one-dimensional materials [2], they have
an intrinsic interest as models of metals which are not
Landau s Fermi liquids [3,4]. Renewed interest in their
study has been prompted by Anderson's proposal [5] that
normal state properties of high T, superconductors are
closer to the known behavior of 1D models than to the
customary Fermi liquid picture.

Although exact information about interacting fermion
systems in 1D has been with us for a long time, recogni-
tion of an underlying universal structure for all of them is
rather recent. According to Haldane [6], all spinless,
gapless, and interacting 1D fermion systems are Lut-
tinger liquids (LL): They share universal features in

their low energy physics corresponding to the exactly
solvable Luttinger model [7]. This is the quantum ID
version of the classical 2D Gaussian model [8]: a critical
system with continuously varying exponents. Elementary
excitations are phononlike density fluctuations governed
by a harmonic Hamiltonian. If one includes global parti-
cle and current fluctuations, the diagonalized Luttinger
model is written as [6]

&t. =vsZlq lbq&q+ [vtv(N —N ) +vJJ ],'q ' ' 2L

where the first term is the bosonlike content of density
fluctuations of wave vector g. N(N, ), J, and L are parti-
cle number, current number, and system length, respec-
tively. A key aspect of the LL concept is the following
scaling relation between the three velocities of the spec-
trum, t Ji ~ =v~. Its importance resides in that it provides2

us with a dimensionless number [6], the exponent param-
eter e ~=vtv/vg, that fully characterizes criticality, and
whose departure from one is a measure of the eAective
strength of interactions.

This proposed universal picture is confirmed by the
known Bethe ansatz (BA) solvable models. In spite of
their physical opacity and the difficulties in extracting
relevant information, there is enough evidence that they
are indeed LL [6,9-11]. Unfortunately, these difhculties
make BA solutions close to useless if one wishes to take

them as starting points for the various interesting ques-
tions related to the LL concept (2D coupling stability,
transport and disorder efl'ects, etc.).

In this Letter we solve exactly a class of spinless (and
under plausible assumptions, with spin) fermion models
which fit into the classification of LL. The required tech-
nicalities are kept to a bare minimum while the solution
can exhibit a very rich structure, both virtues in striking
contrast with standard BA models. Let us consider N
spinless fermions running through a chain of length L and
governed by the following self-explanatory Hamiltonian:

& = —tg(c; c;+~+H.c.)+XgU n;n;+ (2)

The interaction is repulsive, short range (U =0, if
m & p), and otherwise arbitrary, except for the condition
U ( (U +1+U —1)/2. The exact solution will be found
in the limit k ~. The reason for the peculiar condition
on the potential energy will become clear soon. For the
moment, let us present the simple strategy that allows an
exact solution. In the specified limit, the interaction term
(static energy) becomes dominant: States with dilTerent
static energies do not couple to each other. Therefore,
the solution implies the identification of all the states that
share a given static energy and see what the kinetic ener-

gy term does on this manifold.
The lowest static energy is zero: Fermions do not over-

lap their hard core. They move freely, the interaction
becoming the constraint that the minimum mutual dis-
tance is p+1 lattice units. The presence of a particle is

just a restriction on the available space for the others, and
one can map this problem onto one in which the con-
straint has disappeared: free fermions with the same hop-
ping parameter [12]. The mapping is a particle-depen-
dent length rescaling where the position of a particle in

the real system is moved to the left a quantity proportion-
al to the total space stolen by all the other particles to its
left. The rule is i =i —N;p, where i (i ) represents a posi-
tion in the original (mapped) lattice, and N; is the total
number of fermions between the origin and site I'. If the
original Hamiltonian has a density Q=N/L, it is

straightforward to see that the mapped Hamiltonian cor-
responds to free fermions in a lattice shrunk to
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L =L(l —Qp) and with a Fermi vector increased to
/ F I——,/(1 —

Q/ ).
The mapped model is trivially solvable and, therefore,

so is the real problem in the subspace of zero static ener-

gy. Concerning LL behavior, velocities are easily ob-
tained from the total energy of the system FT..

d ET
['w —— 2r . Q~

(1 —Qp)', 1 Qe,
(3)

i J is obtained from the change in energy upon piercing a
flux through the chain. This amounts to changing the
hopping term from t to te', and

~ r) ET Qx=2r(1 —Qp)sin80' 1— (4)

t ~ is equally simple: The mapped free fermion Hamil-
tonian is the simplest LL and a density fluctuation mode
with frequency t. ~q and wave vector q corresponds to a
density fluctuation mode in the real system with equal
frequency and q =q(1 —Qp); therefore,

2r . Q~
1
—QJ, 1 Q/, — (5)

with i~ the sound velocity of the free case. The three ve-
locities satisfy the LL scaling relation, with e ~=(1
—Qp) . Notice the effort in obtaining these values
from their physical definition without assuming any a
priori relation between them. The satisfaction of the
scaling relation is the manifestation of the LL nature of
this problem.

This solution applies to any hard-core Hamiltonian in

the zero static energy sector, irrespective of details inside
the hard core, and survives up to a critical density

Q, ~
=1/(p+1). At this point, velocities go to zero and a

charge density wave (CDW) instability develops. It is

the lowest order commensurate structure that can appear
and corresponds to a closed packing of particles in the
zero static energy sector. An (infinite) gap in excitations
appears because any attempt to shake this closed packed
structure makes particles overlap, with the corresponding
penalty in energy.

Changing (by the corresponding infinite amount) the
chemical potential, we can go beyond this commensurate
structure. Imagine compressing the commensurate struc-
ture by one lattice unit. Two nearest neighbor fermions
reduce their distance by one, creating a domain wall

(DW), or soliton, between two pieces of the commensu-
rate structure. This object can be anywhere, and the cor-
responding sector is degenerate. The kinetic energy part
moves this object as if it were a free fermion running
through the lattice with elementary hops of p+1 lattice
units. Suppose we compress the system one further lat-
tice unit. Two things can happen: Either a new similar
DW is created or the original one accommodates the new

compression. The choice of the potential mode guaran-
tees that the latter possibility never happens: It would

imply an additional infinite penalty in energy. Other
choices would lead to phase segregation between different
commensurate phases, something we want to avoid. Now
the physical picture is clear: Above the critical filling

Q, ~, the excess density is accommodated by DW's of this
commensurate structure. These objects are fermions (no
crossing of world lines), moving freely with p+1 length
hops, but constrained to have a minimum mutual distance
of p lattice units, as can be easily checked. This con-
straint is similar to the one already handled, but with op-
posite sign: The interacting gas of DW's can be mapped
onto a free one with a DW's density dependent lattice re-
scaling (expansion in this case). Following the same pro-
cedure as before, the problem is exactly solved, now with

a further intermediate step: from bare particles to in-

teracting DW's later mapped onto free DW's. The veloc-
ities are evaluated and shown to satisfy the scaling rela-
tion, providing the exponent parameter and a complete
characterization of this LL.

This LL survives until a new critical concentration

Q,2=1/p. At this point we have a rigid structure of
DW s which is the next commensurate CDW instability:
Attempts to shake it cost an infinite amount of energy.
Further compression creates DW's of the new reference
commmensurate structure: These are fermions moving
with elementary hops of p lattice units and with closest
distance of p —

1 lattice units, etc. Now the pattern for a
complete solution is clear and can be repeated until the
CDW structure corresponding to Q~ =1/M, where M is

the lowest integer satisfying 2(M) p/2. For Q E [1
—

QM, 11, electron-hole symmetry completes the task.
For band fillings in the window Q 6 [QM, 1

—
QM j, DW's

structure and interactions become more involved and the
previous simple procedure cannot be pursued to obtain an
exact solution [13l. Notice that for p (4, QM

= &, and

such a window does not exist. Also, we could have avoid-
ed this problem (at the expense of electron-hole symme-

try) by deciding that only contiguous fermions experience
mutual interactions [13] (an n-body coupling in disguise),
but, for simplicity, we stick to the original definition [Eq.
(2)] without further qualifications.

Therefore, we can summarize the exact solution as fol-
lows (0 ~ Q (QM, with the corresponding electron-hole
symmetric counterpart).

(i) The system shows long range commensurate CDW
at fractional fillings Q, =1/m with m =p+ I,p, . . . , M.
Particles are equally spaced (superperiod is m lattice
units).

(ii) Between commensurate structures, the system is a
LL liquid, with interacting (constrained) DW's of the low

density commensurate structure as basic dynamical
objects (bare particles can be considered DW's of the
iacuum commensurate structure). The LL behavior is

characterized by (just one velocity)
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sin, e ~ = (1 —Qp) (6)2t . Oz
1
—

Qp 1
—

Qp

if g ~ 1/(p+ 1), and

[sin(n/g) f, e "=g2t

otherwise. In Fig. l we show the relevant LL information
for the model with p =3.

The following comments are appropriate. The solution
is complete in the sense that all eigenstates can be ob-
tained exactly (free fermions in the mapped system),
though only the low energy part is relevant for the LL
picture. We believe the qualification of this problem as a
LL is already safe. However, from a purist point of view,
one would desire an independent verification from corre-
lations and not only from the spectral velocities, but cal-
culating correlations is not easy. The origin of the diffi-
culty rejects a physical feature expected for any LL: If
one imagines, for instance, introducing a particle in the
real system, the corresponding action in the mapped
problem implies doing so at a rescaled position and, in
addition, a major nonlocal rearrangement of the whole
system. In spite of these di%culties, we have succeeded in

calculating, for instance, the single particle correlations
with the only information contained in the mapping
without invoking the LL concept. The results, of course,
agree with expectations [13]. Nevertheless, an indepen-
dent, correlation-based proof of the correctness of the LL
picture for this problem is possible here. Elementary
geometrical reasoning [12] tells us that, for low ampli-
tude, long wavelength fluctuations, there is always a sim-
ple relation between original and mapped problems for
the quantities ((AN&) ) and ((AN~) ), where ANI is the
particle number fluctuation in a segment of length l, with
the corresponding definition in the mapped version. For
example, in the zero static energy sector, (1 —Qp)
x((h/VI) ) =((5/VI) ), with straightforward generaliza-
tion to other sectors. From the knowledge of this quanti-
ty in the free mapped case, one immediately obtains the
exponent parameter e ~. As expected, the results are in

complete agreement with the evaluation from velocities.
Notice that, from the Gaussian model point of view, just
one correlation is needed to characterize criticality. In
this sense, the previous calculation can be considered
enough.

Unlike solved BA models, the exponent parameter can
be changed arbitrarily. In particular, we can be beyond
the point at which the occupation number shows a singu-
larity in the first derivative at the Fermi surface:
cosh(2$) =2. Thus, this model provides us with a natural
system for the investigation of LL stability versus 2D
coupling [14]. Notice how the exponent parameter e
decreases from the first commensurate structure to Q~
as a consequence of the attractive interaction between
DW's: More DW's implies more available space in the

Vs e —2Q
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FIG. l. Sound velocity and exponent parameter vs particle
density for the spinless Hamiltonian with p =3.

mapped free problem.
The periodicity of the lowest order CDW instability,

m =p+1 lattice units, depends on the range of interac-
tions in the manner expected from the theory of com-
mensurate-incommensurate transitions [15]. Also, from
this point of view, the CDW instabilities are consistent
with expectations: If we are given the expression of the
exponent parameter without explicit reference to instabil-
ities, scaling arguments imply that the LL is unstable to
sine-Gordon perturbations only for exactly the periodici-
ties of the obtained CDW phases. The same scaling ar-
guments [15] imply that the exponent parameter tends to
the value e ~=m while approaching the density of a
CDW with superperiodicity m, as it obviously happens in

the exact solution. A further test of consistency is provid-
ed by the infinite coupling limit of the ALZ model, the

p =
1 case of our Hamiltonian, whose BA solvable equa-

tions lead to the same results of our much more simple
so I u t ion.

As mentioned before, quasifree solitons are the dynam-
ical objects slightly above any commensurate structure.
Also, quasifree antisolitons (elementary dilations of the
reference commensurate structure) are the dynamical
units slightly below any commensurate structure. These
objects carry a charge excess (defect) of 1/m, in original
particle units. They oAer an easy visualization for the
breakdown of Fermi liquid quasiparticle behavior, similar
to the spin-charge separation of spin cases: The bare par-
ticle no longer is the basic dynamical unit, apparently a
recurrent situation in LL problems. With this picture of
charge division, for instance, recent results concerning the
behavior of a perfect LL liquid in the presence of an elec-
tric field [16] can be naturally explained in our model.

We now show that under very plausible assumptions,
the solution presented so far for spinless fermions is also
an exact solution in the spin case. Consider spin- & fer-
mions governed by the same &, supplemented with an
on-site interaction Uo chosen to comply, for the same
reasons, with the previous requirement: Uo& 2U~ —U~.
In the infinite X limit, we have an extreme case of
charge-spin separation: Every previously considered ei-
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FIG. 2. As in Fig. 1 for the spin case.
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Unlike BA models, the technicalities are almost trivial
awhile the solution exhibits a rich structure: For instance,
the periodicity of commensurate phases and the ex-
ponents of the LL can be changed at will by modifying
the range of interactions. We believe these properties
make this model a natural choice in order to exemplify
the universal nature of the LL picture with an exactly
solvable case, and as a manageable starting point for fur-
ther studies of generic LL properties.
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genstate (charge eigenstate) displays now the full degen-
eracy of spin degrees of freedom. To solve the problem,
all that remains is to analyze how, in the large though
finite X limit, the residual spin interaction disposes of this
degeneracy. This will lead to a spin Hamiltonian for
every charge eigenstate with the fol1owing physical re-
quirements: spin isotropy, extreme locality (it is mediat-
ed by very energetic short-lived charge Auctuations), and,
on obvious grounds, antiferromagnetic sign. Thus, we are
forced to conclude that every charge eigenstate organizes
its spin degeneracy according to the Heisenberg antifer-
romagnetic Hamiltonian: iY,~;„=J,ag;s;. s;+ ~, with J,n.

vanishing as 0(/ /X). Notice that index i describes order
and not lattice position: Spin fluctuations Goat on top of
the charge fluctuations. This structure is precisely ob-
tained in the BA solution of the infinite U [17] standard
Hubbard model [18], the simplest particular case of our
family of Hamiltonians with the charge sector corre-
sponding to free spinless fermions, p=0. With this in

mind, the spin case is already solved, and amounts to an
unfolding of the corresponding spinless solution (spinless
full occupation corresponds to spin-half occupation).
Adopting a customary notation [9], the exact solution is

characterized by i, =v„K~= 2 e ~. Notice that knowl-

edge of K~ is enough to obtain all correlation exponents
[9]. Figure 2 summarizes the spin solution corresponding
to the spinless case of Fig. 1, for densities between zero
and half filling (the rest from electron-hole conjugation).

In summary, we have presented an exactly solvable
model for spinless fermions in 1D. The solution shows
the system to be a LL with CDW instabilities at well

defined fractional fillings. Modulo very plausible assump-
tions, the exact solution is extended to the spin case, ex-
hibiting the usual charge-spin separation into two LL.
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