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Free Energies of Generalized Stacking Faults in Si and Implications for the
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The generalized stacking fault energy and entropy have been calculated from first principles for two
(ill) planar cuts in Si separating widely spaced (shuffie plane) and narrowly spaced (glide plane)
atomic layers. Energy considerations predict that the preferred fault is the shufHe plane. When the
entropy is taken into account, it is found that for tensile stresses there is a critical temperature above
which the preferred mode changes from shuRe to glide. We suggest that this change in preferred
fault mode may be related to the brittle-ductile transition.

PACS numbers: 61.72.Bb, 62.20.Fe

The change of state in which crystalline solids con-
vert from brittle, easily fractured substances into ductile,
tough materials has been recognized as vital to tech-
nology for many years, but has eluded explanation by
modern physics. Understanding of the nucleation and
motion of extended defects, particularly dislocations, is
crucial to the physical description of this important tran-
sition. To this end, classical elasticity theory is useful for
length scales beyond a few lattice spacings [1], but can-
not account for the wide discrepancies observed in ma-
terials with difFerent structures and binding properties
[2]. Atomistic computations based on efFective potentials
have met with considerable success for metals, but are
inadequate for nonmetals, where the ionic and electronic
components of the energy cannot be readily decoupled
[2]. A first-principles quantum mechanical description
appears to be necessary to capture the rich behavior of
extended defect nucleation and motion in solids.

Here we present such a study for a prototypical cova-
lent solid, silicon. This choice was inspired by a regener-
ated interest in the behavior of dislocations in this solid,
which may serve as a paradigm for studying the brittle-
to-ductile transition (BDT) [3]. We relate our results on
the zero-temperature and zero-pressure energetics of gen-
eralized stacking faults in Si to crucial solid state parame-
ters that control dislocation nucleation and propagation.
We also develop a formal, yet simple way of extending
these results to finite temperature and pressure, thus al-
lowing in principle a complete thermodynamic descrip-
tion of the processes under consideration. We discuss
how this picture provides valuable insight to longstand-
ing controversies regarding the properties of dislocations
in Si.

Recent theoretical work by Rice [4] on the BDT has
shown that a solid state parameter called the unstable
stacking energy p„, can be used to characterize disloca-
tion nucleation at, and motion away from a crack tip.
p„, is defined as the lowest energy barrier that needs to

be crossed when one part of a perfect crystal slips, on a
particular reference plane, relative to the other part to
complete a total displacement equal to a lattice repeat
vector (the slip path does not necessarily lie along the
lattice vector). The unstable stacking energy is an ex-
tremum of the generalized stacking fault energy surface
p(f) [5], which measures the excess energy for relative
displacement f spanning a complete cell on the reference
plane. In Si, the relevant reference plane is the (111)
slip and cleavage plane. The crystal structure of Si, the
diamond cubic lattice, allows for two distinct placements
of the slip plane: (a) Between atomic planes that are
separated by a distance equal to the nearest neighbor
distance (slip on this plane breaks one covalent bond per
pair of atoms lying on either side of the plane). (b) Be-
tween atomic planes that are separated by one third of
a nearest neighbor distance (slip in this case severs three
covalent. bonds per pair of atoms lying on either side of
the plane). The positions of the two planes are illustrated
in Figs. 1(a) and l(b). These two slip planes between (a)
widely spaced and (b) narrowly spaced atomic layers are
referred to as "shufHe" and "glide" planes in the context
of dislocation motion [1]. We adopt this terminology in
the present wider context of dislocation nucleation and
motion for convenience and brevity.

We have calculated the generalized stacking fault en-

ergy 7(f) for both shufHe and glide planes, for a dense
grid of 33 points in the irreducible part of the slip plane
(which is 1/12 of the area shown in Fig. 1). Our calcula-
tions are based on the local density approximation (LDA)
to density functional theory (DFT) [6], a first-principles
quantum-mechanical approach which has proven very re-
liable in studying the energetics of bulk and surface struc-
tures of Si. The energy surfaces p(f) for the shuffie and
glide planes, before allowing for atomic relaxation, are
shown in Figs. 1(a) and 1(b), respectively [7]. Two in-

teresting points emerge from this comparison. First, the
energy scales are vastly diferent for the shufBe and glide
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FIG. 1. (a) Energy surface p(f) for displacement along
the shufHe plane in J/m . The corners of the box and its
center correspond to identical equilibrium configurations, i.e. ,

the ideal Si crystal. The inset shows a portion of the crystal
with the shufile cut indicated by dashed lines. (b) Same as in
(a) for the glide plane. Notice the difFerent energy scale (dark
areas correspond to values of the energy that are higher than
25 J/m ).

planes, difFering by almost 2 orders of magnitude (see
Fig. 1). Nevertheless, the lowest energy barriers (p„,) are
comparable in magnitude (differing by only 25% before
relaxation, see Table I). Second, the lowest-energy dis-
placement paths corresponding to the shufHe and glide
planes are also very different. In order to clarify this
point we present in Fig. 2 a schematic representation of
the lowest-energy displacement paths on the two planes.

We next discuss the specifics of the lowest-energy dis-
placement paths since they are related to the mechanisms
of dislocation nucleation and motion. On the glide plane
there is a metastable energy minimum for a displace-
ment vector s [121] (displacements are given in units of
the lattice constant of Si). The lowest-energy path fol-
lows this route, completing a 2[011] repeat translation
with a displacement of s [112].The metastable minimum
corresponds to the intrinsic stacking fault encountered in
the well-known dissociation of the total dislocation into
a pair of Shockley partial dislocations [8]. For disloca-
tion nucleation or propagation on the glide plane, dis-
placement through a repeat distance will take place by
successive translations along (211) directions. The un-
stable stacking energy occurs for a displacement vector
of i2 [121]; the energy at this saddle point is an order of
magnitude smaller than that of the corresponding saddle
point in the (101) direction [see Fig. 1(b)]. For the shuf-
fie plane there are no secondary minima in the energy
surface. The preferred slip path lies parallel to the (110)
directions and the unstable stacking energy occurs for a
displacement vector of 4[110]. Dissociation could take
place on this plane also [9], but since it has to be accom-
panied by rows of point defects (vacancies or interstitials)
this possibility is generally dismissed as energetically un-
favorable [1,10].

The calculations discussed so far did not include
atomic relaxations. Using the DFT-LDA approach, it is
feasible, though computationally demanding, to account
fully for atomic relaxations by minimizing the magni-
tude of the calculated Hellmann-Feynman forces through
steepest descent. We have calculated the atomic relax-
ations only for the configurations that correspond to the
lowest-energy barrier (p„,) of the shufHe and glide planes.
The relaxation was performed in two stages: first the
volume was fixed and the atoms adjacent to the slippage
plane were allowed to relax [7]. Then this procedure was
repeated at several volumes, spanning values below and
above the ideal volume of bulk Si. In this manner, the
full relaxation associated with the distortion is taken into

TABLE I. Energy of unstable stacking, p„„at various levels of relaxation, for the shifHe and
glide planes (in J/m ).

(a) ShufHe

(b) Glide

No Relaxation

1.84
2.51

Atomic relaxation
at ideal volume

1.81
2.02

Atomic relaxation
and volume relaxation

1.67
1.91
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FIG. 2. (a) The lowest energy paths
(solid lines) for slippage on the shuffle plane,
which are along equivalent (110) directions.
The circles denote the equilibrium configura-
tions (ideal Si crystal). The dashed lines indi-
cate the saddle-point surfaces. The intersec-
tion of dashed and solid lines determine the
position of the p„, configurations. (b) Same
as in (a) for the glide plane. Here all the slip-

page paths (solid lines) are along equivalent
(211) directions.

account. We find that in the lowest-energy configuration
the the slab contracts by 0.24 a.u. in the direction per-
pendicular to the slip for the shufBe plane, and expands
by 0.24 a.u. for the glide plane. This relaxation is the re-
sult of bond dilation (characteristic of the shufne) or bond
compression (characteristic of the glide) in the unrelaxed
configurations. The results of the energy comparisons
are summarized in Table I. Direct comparison of p„s for
shufBe and glide planes suggests that nucleation on the
shufBe plane will be preferred.

The implications for dislocation motion are more sub-
tle. The shape and magnitude of the p(f) surface deter-
mine the distribution of misfit in the dislocation. For the
misfit confined to a plane, as is expected for Si, a connec-
tion to dislocation motion is given by the Peierls model
[11]: The resistance to dislocation motion (the Peierls
stress) is determined by the variation of the energy of
the misfit distribution with position in the lattice. The
Peierls stress is lower for a wider dislocation, and this
width increases as the maximum gradient of the p(f) sur-
face along the displacement path decreases [12]. Recent
calculations of the Peierls stress in Si [13] show that the
stress is lowest for glide partials, intermediate for the
shufBe total and highest for the glide total dislocations,
indicating that motion on the glide plane is favored.

We next discuss the extension of these zero-tem-
perature and zero-pressure results to include the effect of
finite temperature and pressure. This will prove impor-
tant in obtaining insight to which plane (shufHe or glide)
is dominant for dislocation nucleation and motion, an is-
sue that has been the subject of controversy [10,14—16].
The extension of our results to finite temperature is based
on the transition-state theory of Vineyard [17], which is
used to describe diffusion. First, we note that having cal-
culated the entire quantum-mechanical p(f) surface for
slip, we can formally map this process to the problem
of a classical particle moving on a two-dimensional po-
tential energy surface. This mapping involves folding all
the degrees of freedom of the original many-atom sys-
tem to two collective degrees of freedom, which represent
motion in the plane spanned by the [101] and [121] vec-
tors (see Figs. 1 and 2). In principle, full relaxation of
the energy surface with respect to all the other degrees
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of freedom should be included in the energy surface (we
return to this point below). With this mapping, we can
borrow directly from transition state theory the formulas
for calculating the entropy associated with the diffusion
of a particle. The entropy is the logarithm of the ratio
of two Boltzman integrals [18], the first over a (ol —1)-
dimensional surface around the saddle point (gus) config-
uration and the second over a d-dimensional volume at
the equilibrium configuration (d is the dimensionality of
space, in the present case d = 2).

Our results indicate that, although the glide plane has
a higher p„, value, it also has higher entropy. Since the
entropy term enters in the free energy with a negative
sign, it is possible that under the proper conditions the
free energy of the glide plane can become tower than
that of the shufBe plane. It is a reasonable assumption
to replace the energy of the fault in the Peierls model

by the free energy at finite temperature [19] (the same
applies to the relative Peierls stresses). One can also
take into account the effect of pressure in the free energy,
by considering the volume difference between the ideal
crystal and the saddle point configuration for the two
modes of slippage. This leads to the following expression
for the pressure at which the free energies for the two
modes become equal:

(~glide ~shufBe)T ( Yus-glide 1us-shufBe)

(Ezglide EzshuiBe)

where energies (p„,) and entropies (S) are given per unit
area along the slip plane and Az is the relaxation in
the direction perpendicular to the slip plane. The solid
line in the (P, T) plane of Fig. 3 corresponds to points
at which the equality in Eq. (1) holds. For (P, T) val-
ues above the equality line, the free energy favors the
shufBe plane, whereas for values below the line the glide
plane is preferred. This clearly indicates the importance
of temperature and pressure in discussing the nature of
dislocation nucleation and motion in Si. Two remarks
are in order. First, as seen from Fig. 3, the glide plane
becomes important only at relatively large tensile pres-
sures (such an environment may be encountered at the
tip of a crack, for instance). Second, the values of gus
and h.z in Eq. (1) include full relaxation, whereas the
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FIG. 3. Phase diagram on the (P, T) plane. The equality
in Eq. (1) determines the (P, T) transition (solid) line. Below
(above) the line, slippage on the glide (shufiie) plane is pre-
ferred. The solid line is from the calculation which does not
include the effect of relaxation on the entropy. The dashed
line includes an estimate of the correction to the entropy due
to relaxation (see text).

entropy values were obtained from the energy surfaces of
Fig. 1, which do not include relaxation. Atomic relax-
ation will increase the entropy since it lowers the energy
significantly at the saddle point configuration but only
marginally at the equilibrium configuration (see [20]).
This effect will be more pronounced for the glide plane as
Table I shows. To obtain an order-of-magnitude estimate
of this effect, we assume an increase in the entropy differ-
ence in Eq. (1) due to relaxation equal to that for point
defects in Si ( 50%). This moves the equality line to the
dashed position in Fig. 3 but does not affect the quali-
tative features of the transition. The transition from the
shufHe to the glide mode indicated by the (P, T) phase
diagram may be related to the sharp BDT observed in
Si at T, 873 K [3]. Dislocations nucleate more easily
on the shufHe plane, but as experiments suggest [14—16],
they become mobile on the glide plane. The phase dia-
gram of Fig. 3 shows that a tensile stress of order 10 kbar
is necessary to induce a transition to glide plane domi-
nance at a critical temperature of order 10 K (at the
present level of accuracy in the entropy calculation only
such order-of-magnitude comparisons are meaningful).

In conclusion, we have calculated the generalized stack-
ing fault energy surface p(f), entropy, and volume re-
laxation for faulting on the shuffle and glide planes in
Si. Our results, based on a first-principles computational
scheme, provide for the first time a clear picture of the
relative importance of the two different modes of dislo-
cation nucleation and motion in Si. We have shown that
either mode can be dominant, depending on the tem-
perature and pressure conditions, and that under tensile
deformation, a transition from the sessile shuffle mode
to the glissile glide mode can occur as the temperature
increases beyond a critical value. We suggest that this
change of modes could be related to the brittle-ductile
transition in Si.

We have benefited from useful discussions and corn-
ments on the manuscript by J. R. Rice. The calcula-
tions were carried out at the Cornell National Super-
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