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We report results showing that spatially periodic Bernstein-Greene-Kruskal (BGK) waves, which are
exact nonlinear traveling wave solutions of the Vlasov-Maxwell equations for collisionless plasmas, satis-
fy a nonlinear principle of superposition in the small amplitude limit. The analysis explicates the notion
of superimposed BGK waves which, as recent numerical calculations suggest, is crucial in the proper
description of the time-asymptotic state of a plasma when a large amplitude electrostatic wave under-

goes nonlinear Landau damping.

PACS numbers: 52.35.Fp, 52.35.Mw, 52.35.Sb

Many plasmas exhibit complex collective dynamical
behavior on time scales over which the effects of discrete
particle interactions are negligible. Examples occur, for
instance, in interplanetary and astrophysical settings, as
well as in the laboratory. The nonlinear Vlasov-Maxwell
equations [1] of kinetic theory, which describe the physics
of such *‘collisionless’ plasmas, reduce for longitudinal
electrostatic processes to the one-dimensional Vlasov-
Poisson-Ampere equations,
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where fo(x,u,t) is the distribution function for particle
species @, a=1,2,...,N, and E(x,t) is the self-
consistent longitudinal electric field. Distribution func-
tions F,(u) that yield vanishing charge and current den-
sities characterize the spatially uniform zero-field equilib-
rium solutions of Egs. (1)-(3), the so-called *“Vlasov
equilibria,” which correspond to long-lived metastable
configurations of the physical plasma. Much of our un-
derstanding of wave processes near any of these equilibri-
um states, including the well-known phenomenon of col-
lisionless damping of small amplitude waves in a broad
class of plasmas, follows from Landau’s classic analysis
[2] based upon Egs. (1)-(3) linearized about an equilib-
rium Fo(u).

That the results of the linear analysis are fundamental-
ly incomplete, however, is clear from the work of Bohm
and Gross [3] who showed, in the context of the full non-
linear equations, that there exist traveling wave solutions
of constant amplitude, i.e., undamped waves. For these
exact nonlinear solutions the distribution functions de-
pend on the coordinates x, u, ¢ only through the con-
served single-particle energy &,=m,(u —v)%/2+ g (x
—vt), where v is the wave velocity. Importantly, it is a
distinctive feature of these waves, as opposed to those de-
scribed by the linear theory, that some of the plasma par-
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ticles are trapped within the traveling electrostatic poten-
tial wells. In fact, it is possible, as shown by Bernstein,
Greene, and Kruskal [4], to choose the distributions of
such trapped particles appropriately so as to create elec-
trostatic plasma waves with an essentially arbitrary rela-
tionship between frequency @ and wave number k. For
Bernstein-Greene-Kruskal (BGK) waves of small ampli-
tude, however, the relationship between @ and k is less
arbitrary, and is given in the limit of zero amplitude by
the Vlasov dispersion relation [1,3,5]

2 '
4r da Fa(u)
| —— P ) du—————=0 4
sza': N f Y=ol @

m k
(not the Landau dispersion relation [2]), where P denotes
the principle value, and the functions F,(u) describe the
equilibrium plasma state.

Since BGK waves are exact solutions of nonlinear
equations they do not, of course, satisfy a principle of
linear superposition. In fact, linear superposition does not
obtain even in the limit of zero amplitude, since the fun-
damentally nonlinear phenomenon of particle trapping
remains essential at all amplitudes. Nevertheless, the no-
tion of superimposed BGK waves recently has been
shown to be crucial in accurately describing the time-
asymptotic states obtained in numerical simulations of
plasma evolution from various simple initial conditions
[6]. This numerical evidence strongly suggests, in fact,
that there exists a nonlinear superposition principle for
spatially periodic BGK waves of small amplitude, in
which the electric fields superimpose linearly while the
distribution functions combine in some more complicated
way. Since superimposed wave states were utilized in re-
cent experimental studies of dynamical chaos in the in-
teraction of two constant amplitude electrostatic waves
[7]. In this Letter we develop a principle of nonlinear su-
perposition relevant to these observations [6,7], and give
conditions on the wave amplitudes and the relative wave
velocity under which it applies.

That BGK waves do not superimpose linearly even in
the limit of zero amplitude can be seen as follows. Sup-
pose that (f{",¢1) and (f,¢®) are distribution
functions and electric potentials corresponding to BGK
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waves with respective velocities v; and v,, where D
= ),(i)—Fa are the small deviations of the distribution
functions from those of a Vlasov equilibrium F,. The
linearly superimposed state then is fj =Fa+ha(')+ha(2),
eLl=pW 4+ 6@ in which the distribution functions are
given by their equilibrium values plus the deviations A"
and ha(Z) corresponding to the two separate waves. This
linear superposition satisfies both the Poisson and
Ampere equations, Egs. (2) and (3), exactly by virtue of
their linearity, while the Vlasov equation becomes
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where (d/dt); denotes the time derivative evaluated
along particle trajectories in the superimposed field
ol(x,1). For waves with amplitudes that are of order e,
the deviations h,,(’) and potentials ¢ are each of first or-
der in that small parameter, as is the left-hand side of Eq.
(5). That the right-hand side of Eq. (5) appears to be
second order in € suggests that (f%,¢%) is an approximate
superimposed solution which becomes exact as e— 0.
However, since BGK waves trap particles even at small
amplitudes, the single-wave distribution functions f,,(')
each must satisfy for all € the condition afa(")/au|,,=vi
=0, or equivalently, Bha(i)/au|u=l.i=—dF,I/a'uI,,=,,,,, in
accordance with the formation of a small plateau at the
wave velocity in the distribution functions. But this
means that in the neighborhoods of both phase velocities
vy and vy, the right-hand side of Eq. (5) actually is only
first order in €, and thus remains important even as the
wave amplitude become very small. Thus, the linear su-
perposition fails due to particle trapping and the associat-
ed particular nonlinearity of the Vlasov equation. Never-
theless, below we construct, by a nonlinear rule for super-
position, a two-wave solution that does not suffer from
the above difficulty, i.e., that becomes exact in the limit
e— 0.

Consider the trajectories of single particles in the plas-
ma. In the case of a uniformly translating wave ¢
=¢(x —ovt), the particle energies Eq=mg(u—1v)?%/2
+q.¢(x —ovt) are exact invariants of the motion. The ex-
istence of these simple invariants, in fact, gives the BGK
method its power, since the Vlasov equation is solved ex-
actly by f,(x,u,t) =g«(&,) for any set of smooth, non-
negative functions g,. The situation is far more compli-
cated, however, if the field ¢(x,7) has nontrivial time
dependence that cannot be transformed away by a simple
shift in reference frame. In any such field (which corre-
sponds, except in special cases, to a nonintegrable single-
particle Hamiltonian) the energies &, no longer are con-
served, and accordingly f,(x,u,t) =g,(&,) does not satis-
fy the Vlasov equation. The failure of the simple linear
superposition (f&,¢%) is therefore not surprising, since
the distribution functions are written in terms of quanti-
ties that are not invariant in the field *. A two-wave
solution can be developed correctly, however, by first

finding invariant quantities for the two-wave field, and
then using these true invariants to construct distribution
functions. Thus we search for the proper generalizations
of the two single-wave energy invariants &%) =mg(u
—0:)%/2+ g2 P (x,1) to the two-wave case.

We consider the nearly integrable Hamiltonian system
with Hamiltonian

H(x.,p,1) =p2/2ma+queV (x,1) + gar @ (x,1) (6)

for a charged particle in the field of two small amplitude
electrostatic waves, 7 (x,1) = — €@, cos(k ;x —w,t) and
D (x,1) = —epycos(kx —wst), where &,,3~1 and
€< 1. For definiteness we consider (v;=wi/k) > (v;
=w,/k,). For any nonintegrable Hamiltonian such as
this it is impossible to find global invariants, i.e., quanti-
ties that are well behaved over the entire phase space.
Nevertheless, approximate invariants, valid over restrict-
ed regions of phase space, can be developed via perturba-
tion methods. Moreover, this approximate approach
suffices for the present development since the stochastic
regions occupy an area of the x-p phase plane that is ex-
ponentially small for small wave amplitudes, and the
effects of using the approximate invariants over these re-
gions is higher order and thus can be ignored in this limit.

For the Hamiltonian given by Eq. (6) it is straightfor-
ward to use perturbation theory to find quantities invari-
ant through first order in the small parameter €. A pair
of first-order invariants which reduce for ¢=0 to the
single-wave energy invariants 6 are

géi)=é’,£’)+eqaz—_f}'—<ﬁ(j)(x,t), i,j=1,2, cyclic. (7)
J

These two invariants are equal through first order in ¢
along the time-dependent curve wu(x,t) =uv,,+ (2¢/
magdr)Ap(x,t), where v, = (01 +032)/2, v =0v;—rv», and
Ae(x,t) =M (x,1) =P (x,1). Although neither &."
nor 62 is a global first-order invariant by virtue of the
singularities at the E)hase velocities v, and v, respective-
ly, nevertheless, gé' is well behaved for u = u(x,t), as is
6D for u<ux,t). Thus § and &2 taken together
piecewise provide a pair of invariants which cover the en-
tire x-u plane without singularities. These invariants are
the key elements in the construction of the distribution
functions for a two-wave state.

Figure 1 shows, for the Hamiltonian given by Eq. (6)
with q@\/ma=qe®2/m,=1 and €=0.1, in the specific
case ki =2k, wy=2w, k,=3k, and w,= — 3w, numeri-
cally generated successive intersections of various particle
trajectories with a Poincaré surface of section defined by
stroboscopic sampling at times ¢, =nT, n=...,—1,0,
1,..., where T=2r/w is the period of the two-wave
field. The particle velocity u is plotted vertically versus
the variable y defined as w =kx(mod2x). The closed in-
variant curves centered near the component wave veloci-
ties vy=w/k and v,=—w/k correspond to particles
trapped by either of the two individual waves, while the
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FIG. 1. The orbits of a Poincaré map constructed by strobos-
copically sampling numerically generated particle trajectories
in the two-wave field ¢(x,1) = —ecos(2kx —2wt) —ecos(Bkx
+3wt). Phase plane coordinates are (w,u) where y=kx
x (mod2r).

snakelike invariant curves at larger velocities correspond
to untrapped particles. Figure 2 shows some of the level
curves of the invariants 6’(” and 6(2) evaluated on the
Poincare surface; clearly, é’él) and é’,, capture the gross
features of the particle dynamics, although they do not
reflect the stochastic layers (dark areas corresponding to
single trajectories) or the islands corresponding to
higher-order resonances present i m Flg 1.

The approximate invariants &M and 82 given in Eq.
(7) can be used to construct distribution functions for a
two-wave state. If g(‘) dre the BGK functions for the sin-
gle waves such that FDxu,t) =gP(EP), then we
define the distribution functions f,,(+) for the two-wave
state as

g @EM),
ga(Z)(g¢£2)),

u=>ulx,1),

f¢f+)(x,u,t)={ (8)

u=<u(x,t).

That is, we use the function g“) of the first wave and the
associated invariant &g M (not 6“,5')) above the curve
u(x,t), and the function g(z) of the second wave and 5‘52)
below u(x,t) (which intersects u/v =0 at y=0 in Fig.
2). This definition gives distribution functions that,
through first order in e, satisfy the Vlasov equatlon uni-
formly since they are written in terms of 6. and &2,
and have continuous first derlvatlves even along the
matching curve u(x,1), since & and & meet smooth-
ly there as indicated by the curves near u(x,?) in Fig. 2.
This figure also doubles as a plot of the level curves of
f,,(“ when evaluated on the Poincaré surface.

If these distribution functions are to describe a self-
consistent solution to the Vlasov-Poisson-Ampere equa-
tions, they also must yield charge and current densities
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FIG. 2. Level curves of the first-order invariants &' and

&P, or equivalently, of the two-wave distribution function f{*,
when evaluated on the Poincaré section. Curves were generated
for u= u(x,t) with & and for u < u(x,t) with &

p(x,t) and j(x,r) which generate the correct self-
consistent superimposed electric potential ¢%. Thus,
neglecting quantities higher than first order in ¢, Egs. (2)
and (3) must be satisfied by the distribution functions
fa=f{F) of Eq. (8) when E = — 8¢%/8x. That these con-
ditions for self-consistency are indeed satisfied through
first order can be shown by using the detalled definitions
of the single-wave BGK functions ga ) for small ampli-
tude waves which are discussed, for instance, in Ref. [5].
But this result can be established more easily, since the
integrals in Egs. (2) and (3) can be calculated con-
veniently but still correctly to first order in € simply by
replacing fa('” with f£, the errors so introduced being
~0(e*?). This is so because the linear theory is ade-
quate outside the regions where particles are trapped by
each individual wave, regions where u satisfies m,(u
—0:)%/2 < 2¢|q.?:| for i=1,2, and the functions f{)
agree to first order outside these regions with the lmedrly
superimposed  distribution functions f&=F,(u)+h, b
x(EM)+hP(62). On the other hand, the difference
between f(+) and fL inside the trapping regions is
~0(e). But, from the expression above, the widths in
velocity Au @ of the trapping regions satisfy Au ®
~0(e'?). Thus, since each component wave indepen-
dently satisfies the Poisson and Ampere equations, which
requires that each pair (wy,k;) and (wz,kz) be a root of
the Vlasov dispersion relation of Eq. (4), f{* can be re-
placed by the more convenient f- to establish the self-
consistency of the result.

Thus, we have indeed obtained a self-consistent super-
imposed solution that describes a plasma state containing
two small amplitude periodic BGK waves. This solution
embodies a nonlinear superposition principle, in which the
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single-wave potentials are superimposed linearly, ot

=<p(”+«p(2), while the distribution functions f,,,('H are
constructed from the single-wave distributions by the
nonlinear rule given explicitly by Eq. (8). Extension of
this development to the nonlinear superposition of N
small amplitude waves is straightforward and leads to a
simple generallzauon of Eq. (8) based on g;‘)_(F(’))
i=1,2,...,N, where the approximate invariants &9 are
defined on an appropriate set of N nonoverlapping regions
that cover the x-u plane.

Returning to the two-wave case, the conditions under
which this superposition principle holds can be surmised
by more detailed consideration of &, " and 6 2 Over
the regions in which they are used in the definition of Eq.
(8), these quantities are approximate invariants, with er-
rors that are at most ~O0(e2/5v?). For & and & t
be true first-order invariants thus requires that 5v
~0(e*) where s < 3. Reverting to the physical wave
amplitudes &, and &, (setting e=1), this condition takes
the dimensionless form &,8, < (m4/q,)8c? which must
hold for all species in the plasma. Physically this reflects
the fact that two waves interact less strongly the larger
their relative phase velocity, since large v means that
particles trapped in one wave feel only a high frequency
perturbation from the passing field of the other, and thus
on average are affected very little.

The superimposed solutions constructed here are
relevant to recent experiments investigating the role of
two-wave induced dynamical chaos in nonlinear plasma
heating [7]. More directly, they also appear to describe
certain time-asymptotic plasma states that have been ob-
served in long-time numerical simulations [6] of a large
amplitude electrostatic plasma wave undergoing non-
linear Landau damping [8] in a Maxwellian plasma. In
these simulations, the electric field is observed to ap-
proach a standing wave pattern, while the distribution
functions grow vortex structures corresponding to parti-
cles which are trapped in each of two waves of equal but

opposite velocity. Furthermore, asymptotic states with
similar characteristics, although not symmetric, also are
observed in the nonlinear saturation of linear instabilities
such as in the single-sided bump-on-tail or two-stream
distributions [6]. Physical states such as these appear to
contain two small amplitude BGK waves and be well de-
scribed by self-consistent distribution functions of the
two-wave type developed here.

In summar , by employing the approximate invariant
quantities 6’ for the two-wave superimposed field, we
have constructed the smooth approximate particle distri-
bution functions, given by Eq. (8), which satisfy the
Vlasov equation uniformly through first order in the wave
amplitudes, and yield through the Poisson and Ampere
equations the corresponding correct linearly superim-
posed self-consistent field. This result shows that the no-
tion of superimposed small amplitude BGK waves is
meaningful, even though the superposition is not linear.
These superimposed solutions appear to be essential to
the proper description of the time-asymptotic states of
some large amplitude plasma waves that undergo non-
linear Landau damping [6].
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