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Gamma rays and, for the first time, conversion muons of pt fusion have been measured from
liquid mixtures of protium, deuterium, and tritium. The rate Azo for spin flip from the triplet to the
singlet state of tp(ls) was found to be Azo ——(1.06 + 0.13) x 10 ps, the rate for muon-catalyzed

pt fusion from the (I = 1) nuclear-spin state to be Af, (I = 1) = 0.067 + 0.002 +o'to2 ps, and the
molecular formation rate to be A„, = (7.5+ 0.3 +o's) ps (all rates normalized to liquid hydrogen
density).

PACS numbers: 36.10.Dr

Among the various fusion reactions induced by neg-
ative muons in a mixture of hydrogen isotopes muon-
catalyzed pt fusion is a rather exotic one. Nevertheless
its study brings a wealth of information on all kinds of
processes in muonic atoms and molecules. The two main
reaction channels in this fusion are

ptp ~ (p, He) + p, Qt, = 19.825 MeV,

ptp, ~ p,, „+ He, Q = 19.814 MeV. (2)

Here Qt, denotes the Q value with the p4He system in
the ground state. The branching ratio B between reac-
tions (2) and (1) strongly depends on the population of
the hyperfine states of the ptp, molecule [1] and hence
on the whole chain of reactions from Coulomb capture
to molecular formation. In a protium-tritium mixture
with small tritium concentration c&, tp, atoms are mostly
generated by transfer from the proton to the triton and
therefore have an initial kinetic energy of about 45 eV.
At the instant of formation the two hyper6ne structure
(HFS) states of tp(ls) may be assumed to be statistically
populated. In collisions with protons ptp molecules are
formed in different HFS states, the probability of gen-
erating the nuclear spin configurations I = 0 being de-
pendent on the total spin F of the tp atom [2]. Fusion
by single p emission is impossible for the I = 0 state,
whereas it is expected to prevail for I = 1. Hence B is

strongly influenced by the spin-flip reaction

c~Ago
tp(F = 1) + t tp(F = 0) + t'

c~Aog
(3)

Here Ate and Act denote the spin-flip rates tp(1 s, F = 1)~ tp(ls, F = 0) and vice versa, respectively (all normal
ized to liquid hydrogen density). Since the HFS split-
ting E(F = 1) —E(F = 0) = 0.237 eV is large in com-
parison with the energy of thermal motion, the spin flip
F = 1 —+ F = 0 becomes irreversible for the thermalized
tp, atoms. As a result, the fusion yields depend on the
tritium concentration, the size of the effect being deter-
mined by the spin-flip rate Ate. A corresponding effect
for muon-catalyzed pd fusion, the "Wolfenstein-Gershtein
effect, " was predicted in 1961 [3] and verified by experi-
ment shortly after [4]. The spin-flip rate has been calcu-
lated to be very large, Ate ——10 ps [5—7], which makes
it possible to observe the effect at rather small tritium
concentrations.

The rate Aqo and the speed of tp thermalization are
very important for the d4-fusion cycle, because for ther-
mal tp(ls) resonant dtp, -molecule formation, which is
very fast, takes place only from the singlet state [8]. The
faster the thermalized tp(ls) system reaches the singlet
state the shorter the dt-fusion cycle and the more dt fu-
sions may be catalyzed by one muon.
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FIG. 2. Conversion-muon energy spectrum taken in run
EPl. The coincidence conditions are described in the text.
One channel corresponds to 127 keV.
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and in the BGO between 0.2 ps and 3.0 ps after the First
one. It had to deposit more than 1 MeV in pC. As soon
as a pulse from E14U was in coincidence with this second
signal the event was discarded. Time spectra taken with
the muon counter can be described reasonably well by
the biexponential function (5) (cf. Table I).

The spin-flip rate Aip could be determined by tak-
ing into account only the processes following tp, forma-
tion. The experimentally determined branching ratios B
were normalized to run EP1, the resulting B„, values
were compared with results from the computer code KIN

[13,14]. This code uses Green's functions to solve the
differential-equation system describing the problem with
the reaction rates assumed to be constant in time. The
molecular formation rates A&~i ——350 ps i [15], Aft=1.8
ps i [16], and A~i=7. 5 ps i (see below) were used. The
pt-fusion rates were assumed to be Af, (I = 1) = 0.067

ps i (see below) and Aft(I = 0) = 0.0005 ps i [17].
The branching ratios for the formation of the ptp, hyper-
fine states from the tp(ls) hyperfine states were taken
from [2]. Even large variations in all rates except Aip

changed the calculated B„, values only slightly. Re-
sults from experiment and calculation are compared in

Fig. 3. B»,~ decreases with increasing tritium concen-
tration. This is mainly caused by the growing inQuence

of A]o. To investigate therrnalization eKects B„, was

analyzed for different time windows. The idea is the
following: Events shortly after muon stop (time win-

dow 0.02 & t/ps & 1.02) are most probably coming
from nonthermalized muonic tritium as the thermaliza-
tion rate has a deep Ramsauer-Townsend minimum at 3
eV [18]. During that time the population of the F = 1

state of tp(ls) is held high by F = 0 ~ F = 1 transi-
tions as compared to late events (4.02 & t/ps & 6.02)
where the tp, system may be assumed to be thermalized
and F = 0 —+ F = 1 transitions are no longer possi-
ble. Obviously the B„, values change with delay time,
much stronger than would be expected from calculations
with constant rates. This clearly shows that an analy-
sis with energy-dependent rates is needed. The value for

Aip found from the time window (4.02 & t/ps & 6.02)
was Aip ——(1.06 + 0.13) x 10sps i. This value lies be-
tween older calculated values (Aip = 888 ps [5], Aip =

0.9 10-' 10

FIG. 3, Measured and calculated branching ratio B„,
Measured B, : squares, circles, and triangles stand for
time windows (0.02 & t/ps & 8.02), (4.02 & t/ps & 6.02),
and (0.02 & t/ps & 1.02), respectively. Calculated B„„
dashed, dotted, and solid lines denote calculations with
Ayp = 500ps, Ayp = 900ps, and Azo ——1300ps, respec-
tively. The values for ci——0.81% are separated horizontally to
retain visibility.

Here the second errors given denote the systematic er-

rors, mainly due to the uncertainty of the pt-transfer rate
[18—20]. The experimental value for A„, agrees with the
calculated values A~t = 6.5 ps [21] and AP = 6.38 ps
[22]. The rate for ptp fusion is in agreement with
the result from our earlier experiment [23]. The value

Aft(I = 1) = 0.2 ps derived in [24] from data on the pt
reaction at low energies with the help of Eq. (4) and a
value of pp = 5.4 x 10zs /cms [25] is a factor of 3 larger
than our experimental value. On the other h'. id our ex-
perimental value for Af, (I = 1) is an order of magnitude
larger than the estimate [26] based on the reaction con-
stant for the mirror reaction of radiative neutron capture
by He, A~, (I = 1) = 0.008 ps [the cross section from
the most recent experiment [27], o (n, p) = 54 + 6 pb, is

used]. This discrepancy is not yet understood.
From the mean of the conversion-muon disappearance

910 ps [6]) and the most recent one (Aip = 1300 ps
[7]).

To derive A~i and Af, (I = 1) all reactions including
hyperfine transitions have been taken into account and
pt-fusion p time spectra were compared with results from
the code KIN. Up to three time spectra (each with 300
channels at a 16 ns binning) have been fitted simulta-

neously with five free parameters [AIt(I = 1), A~„and
three amplitudes]. A detailed description of the fitting
procedure will be published elsewhere [9]. We obtained

Af, (I = 1) = 0.067 + 0.002+p pp2 ps

A = 75+03+ ps
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rates (cf. line 12 of Table I), (Ag) = 0.61 ~~0.02 ps
the rate for fusion from the I = 0 hyper6ne state of
the pttj, molecule was deduced to be Aft(I = 0)
0.15 +0.02 ps . This value is surprisingly large, namely
more than 2 orders of magnitude larger than the most re-
cent theoretical estimate [17], A~, (I = 0) = 0.0005 ps
Some work has to be done to clear this puzzle.

The data taken with the Ge(hp) detectors enabled
us to deduce two quantities characterizing sticking
after pt fusion: Our experimental value for the yield
u(Ka) of Kn x rays from He, u(Ko. ) = (11 + 3)%
is in good agreement with the calculated value [28],
ur(Ka) = 9.5%. Finally, the branching ratio Bz„of ini-
tial sticking in the 2p state over initial sticking in the 1s
state of p He was found to be Bq„= (6.6 + 5.4)%.
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