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Momentum Analyticity and Finiteness of the 1-Loop Superstring Amplitude
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The type II superstring amplitude to 1-loop order is given by an integral of 0 functions over the moduli
space of tori, which diverges for real momenta. We construct the analytic continuation which renders
this amplitude well defined and finite, and we find the expected poles and cuts in the complex momentum
plane,

PACS numbers: 11.17.+y

One of the key successes of superstring theory is the
observation early on that the type II superstring ampli-
tude to I-loop order does not exhibit the tachyon and di-
laton divergences that occur in the bosonic string [1].
Nowadays, all superstring amplitudes are believed to be
finite in perturbation theory [2,3]. Yet, even the nature
of the most basic I-loop amplitude for the scattering of
four massless bosonic strings, such as the graviton, dila-
ton, and antisymmetric tensor, has so far not been com-
pletely elucidated (see, e.g. , [4]). This amplitude is rep-
resented by an integral over positions of vertex operators
and moduli of the torus, which is absolutely convergent
only when the Mandelstam variables s, t, and u are all

purely imaginary. For real momenta, the integral is real
and infinite.

Reality of the I-loop amplitude would imply the van-

ishing of the tree-level four-point function by the optical
theorem, which is in contradiction with its known nonvan-

ishing expression. Both the reality and the divergence of
the integral representation are manifestations of the same
illness: The integral representation has not been properly
analytically continued in its dependence on external mo-
menta. Another way to say this is that unlike in quantum
field theory, one has not properly provided an ie prescrip-
tion for the string propagators [5]. This issue was ad-
dressed in the field theory limit of superstring theory in

[6,7]. Other attempts at resolving this and related prob-
lems are in [8].

In this Letter, we present the crucial steps and results
in the construction of the analytic continuation of these

integral representations. Specifically, we consider the
amplitude for the scattering of four external massless bo-
sons„ including the graviton, dilaton, and antisymmetric
tensor, to 1-loop order in the type II superstring. This is
the simplest nonvanishing on-shell amplitude, and the
first nontrivial quantum gravity loop amplitude which is
both finite and unitary. We obtain explicit formulas for
the singularities in the complex momentum plane in the
form of poles in s, t, and u and cuts along the positive real
axis. The amplitude may be represented by a double
dispersion relation and the (double) spectral density is
evaluated explicitly. Generalization to %-particle 1-loop
amplitudes is technically more involved, but straightfor-
ward.

Our starting point is the amplitude A(k i, . . . , k4) for
the type II superstring to I-loop order for four external
massless bosons of momenta k;, i = 1, . . . , 4. The ampli-
tude has a kinematical prefactor —the same at tree level
and irrelevant to our considerations —and a single invari-
ant amplitude, given as an integral over the positions of
the vertex operators and the moduli of the world-sheet
[1-3]. The world-sheet at 1-loop order is a torus, which
can be represented as a parallelogram M, in the complex
plane with corners at 0, I, I:, I + i, and opposite sides
identified. The parameter i = I

~
+i r 2 is the complex

modulus. Modular invariance restricts z to the funda-
mental domain [rz&0}/PSL(2, Z), which we choose to
be D =[rq &0.1& I

& I, lr il & T'}. Let G(z, w) be the
Green's function on the torus defined by —r), 8,-6(z, w)
= 2rr6(z, w) —2tr/r 2. Then

4 d'z;
A(k, , . . . , k4) =A(s, t, u) =~,' „Q ' +exp[ —,

'
s;, G(z;, z, )}.

T2 i=l ~2 i (j
Here we have introduced standard Mandelstam variables s =sty =s34 (k t+k2), t =s23 =s t4

= —(kz+k3),
u s t3 $24 (k i +k 3), where all external momenta are on mass shell k; =0, so that s+ t + u =0. The Green's
function may be expressed in terms of 6 functions

2
Oi(z —w, r )

e ' = '
exp I —2tr[im (z —w )] '/r p} .

0i(0, r) (2)

By translation invariance we may set z4=0. The region of integration separates naturally into six regions defined by the
various orderings of Imzt, lmz2, Imz3. The amplitude can be split accordingly as [6,7]
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A(s, t, u) =2A(s, t)+2A(t, u)+2A(u, s) (3)

with A(s, t) given by the integral in (1) restricted to the region Imz~ 6 Imz2 ~ Imz3 and u = —s —t T. he amplitude
A(s, t) converges absolutely for —2 & Res, Rel ~ 0. It suffices then to analytically continue A(s, t) in order to obtain a
finite amplitude A(s, t, u) with manifest duality. This is the problem we focus on.

The first step in the analytic continuation is a careful analysis of the singularities of (I ) as r tends to the boundary of
moduli space. For this we need the real variables 0~ x,y ~ 1 defined by z =x+ ry, in terms of which G(z, w) becomes

exp~ —«'»i = lql' 'll —e'""q"I'll —e ' '-"q' -'I'«z)
4 2

(4)

R(=) = H ll — "I 'll — ' "q"''I'll-
n=i

Here we have set q =—e ". Since Iql & e in 0, R(z) is a nowhere vanishing, bounded function of both z and q.
Thus the expected logarithmic singularity of the Green's function G(z, w) when z approaches w corresponds to the inter-
mediate two factors in (4), while the term Iql»» describes the behavior of the Green's function near the boundary of
moduli space. It is now convenient to introduce the variables ui =yi, u2=y2 —yi, u3=y3 —y2, u4=1 —y3 and
a; =2tr(x;+y;r

~ ), i =1,2, 3, and a4=2trr
~

—a~ —az —a3 and to rewrite the amplitude A(s, t) as

pl 3 ~,. t i 4 4

A(s, t)=„) / ' /du, 6 1
—y u; Iql

'""' '"'"' J(u, a, q).B(u, a,q),
I =1

where we have defined the functions

x
I

I
—"'I I"'I 'I l

—""'"""II"""""'I 'I —"'+'"I I"""'I'+'

xll — '"I I"'I 'll —"""""'II"""""'I 'll — '"""I I"""'I'+'

R(z2 —z()R(z3) R(z3 —z2)R(z])
8(u, a, q) =

R(z —z, )R(z ) R(z —z, )R(z )

(6)

A preliminary key observation is that for fixed r, the integrals in a;, u; can be analytically continued to meromorphic

functions of s and t on the whole plane. In fact the condition Iq"' "' "' "'I =Iql ~ e guarantees that at most 6 of
the 12 factors in 2(u, a, q) can approach 0 simultaneously, so that the following lemma and its variants will do the job.

Lemma I.—The integral over three complex variables k;, i =1,2, 3, given by

««I
I

++«=i ««+I I2/v+lE ( )8(u, a, q) =I+
0 ~ I,JI„ I-k~ ~ 2/V

1 ~ min(I, maxI, JI, )

where Ez(u, a, q) is smooth and bounded. In particular the contribution of Iql ++'E~(u, a q) to (5) is convergent and
meromorphic for Res & IV, Ret & N. This reduces .8 to the finite sum, all the terms of which can be treated by the
method we give below. We work out explicitly the leading term 1, which exhibits branch cuts in s and t starting from 0.
The net eAect of each term is just to shift the beginning point of each cut to an even positive integer instead of 0. Physi-
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(7)
l

where E(k;) is a smooth function, can be analytically continued to the whole plane, with at most poles for s, t, and

u = —s —t at half integers greater than or equal to 2. The coefficients of a pole in one variable are entire in the other
variable.

We should note here though that these meromorphic terms without cuts are required as part of the amplitude simply

in view of the fact that they are the ones that reproduce correctly the large s and t behavior of the I-loop amplitudes [9].
The remaining contributions with cuts have only power law behavior.

We concentrate now on the analytic continuation of terms requiring cuts, and ignore meromorphic terms which can

be treated by Lemma 1. This means that only the region with z. 2- ~ is relevant, and we restrict the domain D of in-

tegration to the simpler flr~l & 2, r2& 1I. The next key observation is that it suf%ces to set %(u, a, q) =1. Indeed it

suNces to construct the analytic continuation of A(s, t) to an arbitrary half-space Res & iV, Ret & iV. Now for any fixed

JV, R(u, a, q) can be expanded as
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cally, the cuts start at the lowest invariant mass at which an intermediate physical string state may be produced.
The leading case corresponds to massless intermediate states, and the perturbative terms to higher mass states. Thus

we need only consider the following integral

4 ~. ~ 4 4

, g, H '„, +du, 6 I
—g u; Iql

""'"'+'"'"'Z(u,a, q)
t=1

up to cuts that start at nonzero positive even integers,
which can be treated perturbatively. The integral (8) is

symmetric under (u~ u,3a] a3) and under (uq u4,

a2 —a4), so the integration region can be restricted to
Ll ]

~ M 3 and u 2 ~ u4 upon including an overall factor of
The remaining integral may be split into two regions I

and I I defined respectively by (u ~+ u &) r 2 & 1 and

(u~ +up)T'2) 1.
(Su I u 3+ f u 2u4)

In region I, the exponential Iql
' ' ' ' ' remains a

bounded smooth function. In view of Lemma 1, the con-
tribution of each r2 (and hence the whole integral, since
the dry/rq measure is finite) is a meromorphic function
of s and t in the whole plane.

The diAicult region is then II, which will generate both
poles and cuts. Here, however, the factor Au, a, q)

simplifies considerably since Iq I

' ' & e whenever
one index i or j is odd and the other even, and we can ex-
pand in these variables. For s and t in a fixed arbitrary
strip, we need keep only a finite number of terms. Each
term can be treated in the same way as the main term,
producing cuts in both s and t shifted to the right by an
even integer. Restricting ourselves to the main term, we
need keep only the four factors (I —e"'Iq

I

")~'"'",
i =1, . . . , 4 in (6). At this point it is convenient to en-
large the region II back to the full region I+II, since the
contribution of I with four factors is again just a mero-
morphic function in the entire plane. The angular u;
dependence decouples and integrates out to a hyper-
geometric function. Thus up to meromorphic functions
on the whole plane and higher cuts the original amplitude
8 (s, t) can be expressed as

—(suu+1uu ) S S 2uHd, & I
—Z, lql

""'"'+'""'F —', —';l, lql'"'
~0 T2 60 I= I i=I 2'2' ''

x« —' —''I. lql"' F —', —''l, lql'"' F —', —';l, lql'"'2'2' ' 2'2' ' 2'2' ' (9)

We present the analytic continuation of (9) under two forms, each with its own advantages. In the first, the cuts along
the positive axis can be written out explicitly in terms of logarithms. An important ingredient is the Mellin transform of
hypergeometric functions, which we define for each fixed integer JV by

ftv(s, a) = dxx ' ' F —', —';l, x —g C, (s)x', C, (s) =
6 0

/ =0
r (s/2+ k ) '

r(s/2) 'r(k+ I ) ' (I o)

The polynomials Ct,. (s) are the expansion coefficients of' F
!and arise naturally as the residue of the tree-level closed

superstring amplitude at t =2k.
Lemma 2.—The I'unction 6,"ftv(s, a) is the sum of' a

meromorphic function ftv+„(s, a) of a with poles of order
n+1 at W, N+1, . . . , and a meromorphic function
f tv „(s,a) of s w'ith simple poles at the even integers
greater than or equal to n+2, n+4, . . . . The dependence
on the other variable in each case is entire.

The analytic continuation of 2 (s,O) to C)IR+ can now
be expressed simply as

Btv (s,s';t, t') = —2tr Q Ct, , (t)Ct„(s)
/. I, k2 =0

~ 3A(s, O) =—s ln( —s) du(1 —u) u f 0(s, ——, su)'
6 U 0

(11)
up to a meromorphic function and higher cuts. We note
in particular that 3 (s,O) has double poles at s =2, 4, . . .

lying under the cuts and that its residues depend on the
cut discontinuities. In particular the mass renormaliza-
tions and widths of massive string states arise in this way.
To obtain the analytic continuation in both s and t, we
begin by introducing the following expression in I'our

variables, s, s', t, and t',
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xJI J
2k;u; (N, u I+ u2 ( I

( )
N( —s'u]+2k3) —N( —t'u2+2k4)

k3, k4 s'u
)
—t'u 2

—2k 3+ 2k 4

JV j2 —
I

+ g C/c(s)N( —t'u2+2k)f2tv[t, —,
' ( —s u~+t'up —2k)]k=0

/v /2 —]

+ g Ct, (t)C( —s'u ~+2k)f2tv[s, —,
' (s u~ t'u2 —2k)]k=0
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where the function N is defined by

&(g) = [g(1 —u t
—uz)+2k tu 1+2k2uz] In[/(I u

1 uz)+ 2k iu i+2k 2uz] .

It is readily seen that 6,"tit 8tv (s,s';t, t') is holomorphic in the region Res, Ret & 2+n, s', t' E IL(IR+, Res', Ret' & tV, and
tV is large enough compared to n In . fact 82(s, s;t, t) gives precisely the desired continuation of 3 (s, t) to the half-plane
Res, Ret & 2 up to a meromorphic function. The analytic continuation of A(s, t) to an arbitrary strip can be obtained

by integrating (12) with respect to s' and t'; e.g. , for the strip i
Res i, i

Ret i
& 3 it can be expressed as

r s
W(s, t) =A(s, 0)+8(0,t)+ dt'„ds'r), r), 83(.s, s';t, t')+Cl(s, t) . (i 3)

The additional term Ci(s, t) consists of functions which are either meromorphic or have only logarithmic cuts starting
from s=2 or t =2, and can be worked out explicitly. Thus (11) and (13) give the desired exact formulas for cuts start-
ing at 0. Cuts corresponding to higher intermediate mass states can be obtained successively by the same method.

The second method of obtaining the analytic continuation is to recast expression (9) in the form of a double dispersion
relation

p, , (o, r)
A(s, t) =J do dr

s —cr t —r

where we have again ignored meromorphic terms. The (double) spectral density p, t(t7, r) is given by
P oo +oo pl r l

—ul

ps I (~~ r ) g dPI) dP2v (I Pl )4 (s~P2)~ du I du 2(l u I u 2)
p oo

x
~ dx (x —xp) '0(u

1
cr —2x )J g0

(i 4)

Ml0
x()(uzr —2x)s t,

t4I 2
T'—xmas, —x

2

with xp=(uiPi+uqPq)(1 —ul —u2) ', and p(s, P) is the
inverse Laplace transform of the hypergeometric func-
tion F(s/2, s/2; I,x). Since p(s, P) =fp(s, P+ie) —fp(s,
P

—ie), the spectral density is a meromorphic of s and t

with poles at even integers. As tT, r ~, p, t(cr, r) grows
linearly, so that the integral (I5) is not convergent. We
can, however, obtain convergence by subtracting a suit-
able meromorphic function, a procedure analogous to
(13). The net outcome is that the double dispersion in-

tegral defines an obvious analytic continuation to the full

s, t complex plane with a cut on the real positive s and t

axes, with known discontinuity p, t(cr, r). As a simple ex-

ample we return to the case of t =0. Up to a meromorph-
ic function the double dispersion reduces to a simple
dispersion relation with spectral density

dz'
p, (o) = —„, p, p(cr, r)

3

24 Jo du u'(I —u)'[fp(s, —
—,
' ucr)]',

which gives back the singularities obtained earlier in

(I I). In view of the decomposition of fp into fp— of
Lemma 2, these singularities have a natural interpreta-
tion in terms of underlying Feynman diagrams. The con-
tribution of (fp+) contains double poles in s and corre-
sponds to the vacuum polarization diagrams in the s
channel. This is the only diagram that needs subtraction.
The contribution 2fp+fp corresponds to the insertion of
the triangle diagram with a single simple pole left, and

finally (fp ) corresponds to the box diagram, and no

poles in s occur. In summary:
Theorem The amplitude A.(—s, t) can be analytically

continued to the region (s, t) C (ILilR+) . In this region it

!
has poles when s+t is an integer less than or equal to
—2. The jumps across the cut along the positive real axis
together with the underlying poles at even positive in-

tegers can be read oft either in terms of logarithms as in

(13), or in terms of a dispersion relation as in (14).
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