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A new framework is found for the compactif~cation of supersymmetric string theory. It is shown that
the massless spectra of critical string vacua with central charge c =3D„;t can be derived from manifolds
of complex dimension D,„;1+2(Q—1), Q ~ 1, whose first Chem class is quantized in a particular way.
This new class is more general than that of Calabi-Yau manifolds because it contains spaces correspond-
ing to vacua with no Kahler deformations, i.e., no antigenerations, thus providing mirrors of rigid
Calabi-Yau manifolds. The constructions introduced here lead to new insights into the relation between
Landau-Ginzburg vacua on the one hand and Calabi-Yau manifolds on the other.
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It is believed that the heterotic string without torsion
can propagate consistently in a manifold only if this man-
ifold is complex, Kahlerian, and admits a covariantly con-
stant spinor, i.e., has vanishing first Chem mass. Mani-
folds of this type, so-called Calabi- Yau manifolds, are ex-
amples of left-right symmetric string vacua with A =2
supersymmetry on the world sheet. It is further believed
that the configuration space of such ground states fea-
tures an important symmetry, not at all manifest in the
construction of the superstring: mirror symmetry. The
predictions derived from this symmetry, which has been
discovered in the context of Landau-Ginzburg (LG) va-
cua in [I] and proven to exist in this framework in [2],
have been shown to be correct in all computations per-
formed so far [3,4]. Independent evidence for this sym-
metry has been found in the context of orbifolds of exact-
ly solvable tensor models [5].

Mirror symmetry creates a puzzle. There are well-
known Calabi-Yau vacua which are rigid, i.e., they do not
have string modes corresponding to complex deformations
of the manifold, fields that describe generations in the low

energy theory. Since mirror symmetry exchanges com-
plex deformations and Kahler deformations of a mani-
fold, the latter describing the antigenerations seen by a
four-dimensional observer, it would seem that the mirror
of a rigid Calabi-Yau manifold cannot be Kahlerian and
hence does not describe a consistent string vacuum. It
follows that the class of Calabi-Yau manifolds is not the
appropriate setting in which to discuss mirror symmetry
and the question arises what the proper framework might
be.

It is the purpose of this Letter to introduce a new class
of manifolds which generalizes the class of Calabi-Yau
spaces of complex dimension 0„;t in a natural way. The
manifolds involved are of complex dimension [D„;,+2(Q
—1)], where Q is a natural integer, and have a positive
first Chem class which is quantized in multiples of the
degree of the manifold. Thus they do not describe, a
priori, consistent string ground states. Surprisingly, how-
ever, it is possible to derive from these higher dimensional
manifolds the massless modes of critical string vacua.

This can be done not only for the generations but also for
the antigenerations. For particular types of these new

manifolds it is in fact possible to construct D,„;&-dimen-

sional Calabi- Yau manifolds directly from the [D„;&
+ 2 (Q —

1 ) ] -dimensional spaces.
This new class of manifolds is, however, not in one-to-

one correspondence with the class of Calabi-Yau mani-
folds as it also contains manifolds which describe string
vacua that do not contain massless modes corresponding
to antigenerations, It is precisely this new type of mani-
fold that is needed in order to construct mirrors of rigid
Calabi-Yau manifolds without generations. The results
presented in this Letter suggest that the noncritical mani-
folds described here are no less physical than critical
manifolds and indeed define the appropriate generaliza-
tion of the Calabi-Yau framework of string compactifi-
cation. They also lead to important ramifications regard-
ing the relation between Landau-Ginzburg theories and
critical manifolds.

Higher dimensional manifolds with quantized positit e
first Chem class. —Consider the class of manifolds Attv d

of complex dimension % embedded in a weighted projec-
tive space P~l, , I, „~ as hypersurfaces defined by the
zero locus of a transverse polynomial p(z~, . . . , ztv+&) of
degree d. Here the integers k; describe the weights of the
ambient weighted projective space. It will be assumed
that the weights ~t(.

.; and the degree d are related via the
constraint

N+2
k; =Qd,

i =]

where Q is a positive integer. Relation (1) is the defining
property of the class of manifolds I will consider in this
Letter. It is a rather restrictive condition in that it ex-
cludes many types of varieties which are transverse and
even smooth but are not of physical relevance. (A partic-
ularly simple manifold in this class, the cubic sevenfold Pz
[3], has been the subject of recent investigations [6-8].)

A Item atively, man i folds of the type above may be
characterized via a curvature constraint. Because of (1)
the first Chem class is given by e~ (JRtv d) = (Q —1)dh,

3688



VOLUME 70, NUMBER 24 PHYSICAL REVIEW LETTERS 14 JUNE 1993

where h is the pullback of the Kahler form of the ambient
space. Hence the first Chem class is quantized in multi-
ples of the degree of the hypersurface. For Q= 1 the first
Chem class vanishes and the manifolds for which condi-
tion (1) holds are Calabi-Yau manifolds, defining con-
sistent ground states of the supersymmetric closed string.
For Q ) 1 the first Chem class is nonvanishing and there-
fore these manifolds cannot possibly describe vacua of the
critical string, or so it seems.

It will be shown below that these spaces are closely re-
lated to string vacua of critical dimension 0„;t=N —2
x(Q —1). The evidence for this is twofold. First it is

possible to derive from these higher dimensional mani-
folds the massless spectrum of critical vacua. Further-
more it is shown that it is possible to construct Calabi-
Yau manifolds Mpy of dimension D,„;t and complex codi-
mension Q directly from certain subclasses of hypersur-
faces of type (1). ln terms of the critical dimension and
the codimension the class of manifolds to be investigated
below can be described as the projective configurations

1
+crit+ ~Q

P(k~, . . . , k(D ~)g&) Z i(i
crit i=i

(2)

where the expression in brackets denotes the degree of the
polynom ia1.

The class defined by (2) contains manifolds with no an-
tigenerations. Hence it is necessary to have some way
other than Calabi- Yau manifolds to represent string
ground states in order to establish a relation between
such higher dimensional manifolds and string vacua. One
possible way to achieve this is to associate them to
Landau-Ginzburg theories which are characterized by
their chiral ring structure encoded in the superpotential.

In certain benign situations the subring of monomials
of charge I in the chiral ring describes the generations of
the vacuum [9]. Thus the generations are easily derived
for this subclass of theories in (2) because the polynomial
ring is identical to the chiral ring of the corresponding
LG theory. In general a more sophisticated analysis, in-

volving the si ngularity structure of the h igher dimension-
al spaces, will have to be done [10].

I t remains to extract the second cohomology. For
manifolds with positive first Chem class all of the second
cohomology resides in H " . The simplest example in

the class (2), P& [3], already shows, however, that there is

a mismatch between the Kahler sector of the higher di-
mensional manifolds and that of the critical vacuum: For
Ps [3] the diagonal cohomology leads to it t'" =1,0~ p~ 7, whereas the critical vacuum, described by the tensor
model 1, has no Kahler deformations at all. Since the
critical theory does not contain modes corresponding to
(1,1) forms it appears that a potential manifold cannot be
Kahlerian and hence not projective. Thus it seems that
the seven-dimensional manifold Ps [3], whose polynomial
ring is identical to the chiral ring of the LG theory, is
useful merely as an auxiliary device in order to describe

describes a vacuum with 35 generations and 8 antigen-
erations. Associated to this ground state is the a%ne
configuration tL(3 3 3 3 3 3 3) [9] which induces, via pro-
jectivization, a five-dimensional weighted hypersurface
P(2 p 2 3 3 3 3) [9]. This compact manifold has orbifold
singularities with respect to the cyclic groups Z3 and Z2,
the first one obtained by setting x; =0, the latter by set-
ting y; =0:

4

Z3 P3[3] ~ ' p) = g x =0 Z2. P2. (4)

The Z3-singular set is a smooth cubic surface which sup-
ports seven (1,1) forms whereas the Z3-singular set is just
the projective plane and therefore adds one further (1,1)
form. Hence the singularities induced on the hypersur-
face by the singularities of the ambient weighted projec-
tive space give rise to a total of eight (1,1) forms. A sim-
ple count leads to the result that the subring of monomi-
als of charge 1 is of dimension 35. Thus we have suc-
ceeded in deriving the massless spectrum of the critical
theory from the noncritical manifold P(2 2 3 3 3 3 3) [9].

It is presumably possible to derive this result via a sur-
gery process on the singular space, but more important is,
at this point, that the idea introduced above of relating
the spectrum of the string vacuum to the singularity
structure of the noncritical manifold also makes it possi-
ble to derive from these higher dimensional manifolds the
Calabi-Yau manifold of critical dimension. This leads to
a canonical prescription which allows one to pass from
the LG theory to its geometrical counterpart when the

one sector of the critical LG string vacuum.
Relation between critical and noncritical manifold@—It turns out that by looking at the manifolds of the

type described by (2) in a particular way it is indeed pos-
sible to extract the second cohomology in a canonical
manner (even if there is none) T. he way this works is as
follows: The manifolds (2) will, in general, not be de-
scribed by smooth spaces but will have singularities which
arise from the projective identification. The basic idea is

that the critical string physics has its origin in the singu-
larity structure and the chiral ring of these higher dimen-
sional noncritical manifolds. In particular the antigen-
erations are generated by the singularities.

In the following I will make the ideas involved more
precise and illustrate how they work with a few particu-
larly simple classes of theories, leaving a more detailed
investigation of other types of manifolds to a more
extensive discussion [10]. As an unexpected bonus this
derivation will provide new insight into the Landau-
Ginzburg/Calabi- Yau connection.

It is useful to first consider an example in some detail.
The GSO projected LG theory based on the superpoten-
tial

3

W= g (x; y;+y, )+y4
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model has antigenerations.
Recall that the structure of the singularities of the

weighted hypersurface just involves part of the superpo-
tential, namely, the cubic polynomial p l which deter-
mines the Z3-singular set described by a surface. The su-
perpotential thus splits naturally into two parts

p =pl+p2, where p2 is the remaining part of the polyno-
mial. The idea is to consider the product P3 [3]xPq,
where the factors are determined by the singular sets of
the higher dimensional space, and to impose on this four-
dimensional space a constraint described by the remain-
ing part of the polynomial which did not take part in con-

straining the singularities of the ambient space. In the
case at hand this leaves a polynomial of bidegree (3, 1)
and hence we are led to a manifold embedded in

F230
P3 1 3

P l =J l X l +J2X2+P'3X33 3 3

But this is a well-known Calabi-Yau manifold of complex
dimension 3, introduced in [11].

The ideas just described are general. A class of mani-
folds of a difTerent type which can be discussed in this
framework rather naturally is defined by the projective
configurations

2

P(2k, K —k.2k, K —k, 2k, 2k, 2k ) [2K] & ' ~ (x; + x y; ) +x3 + x4 +x5 0K/k 2 K/k 3 K/k 4 K/k 5

where )(('=k+k3+k&+k5 and it is assumed, for simplicity, that K/k and )k /k; are integers. (These conditions can be
removed as will be shown in [10].) The singularities in these manifolds are of two types,

5
K/k.

Z2 P(kkk3kgk, g),[Ik, ] +, I) 1 & xi 0 '. ZK —k. PI .
i=I (7)

The Z2-singular set is a threefold with positive first Chem class embedded in weighted P4 whereas the ZK —k-singular set
is just the sphere 5 —Pl.

In complete analogy with the previous discussion the manifolds in this class lead to critical manifolds embedded in

2 0

P(k, k, k3, k4, k, )

pl =ylxl+y2x2=02 2

)t)2=x) ~ +x ~ +x '+x '+x '=0 Ij

That this correspondence is in fact correct can be inferred
trom the work of [12] where it was shown that these
codimension-2 weighted complete intersection manifolds
correspond to % =2 minimal exactly solvable tensor mod-
els.

The picture that emerges from these constructions is

the following: Embedded in the higher dimensional mani-
fold is a submanifold which is fibered, the base and the
fibers being determined by the singular sets of' the am-
bient manifold. The Calabi-Yau manifold itself is a hy-
persur face embedded in this fibered submanifold. I n

more complicated manifolds the singularity structure will

consist of hypersurfaces whose fibers and/or bases them-
selves are fibered, leading to an iterative procedure. The
submanifold to be considered will, in those cases, be of
codimension larger than 1 and the Calabi-Yau manifold
will be described by a submanifold with codimension
larger than 1 as well. In the most general situation the
fiber bundle will presumably not be a simple product bun-
dle as in the previous examples but will involve nontrivial
twists.

The relation between noncritical manifolds of type (2)
and critical string vacua is not one to one. By using the
construction of "splitting" and "contracting" Calabi-Yau
manifolds introduced in [13], it can be shown that non-
critical manifolds of difkrent dimensions can lead to one
and the same critical vacuum. Thus there exist nontrivial
relations between spaces of type (2). A more detailed

!
discussion of these aspects will appear in [10].

In the present framework it becomes clear what is spe-
cial about string vacua that do not have modes corre-
sponding to antigenerations. Consider again the example
related to the tensor model 1 . Its LG theory describes
an aSne cubic surface in C9 the naive compactification of
which leads to Ps[3] v K;=)z; =0}. Counting monomi-
als leads to the spectrum of 84 generations found previ-
ously for the corresponding string vacuum and because
this manifold is smooth no antigenerations are expected
in this model. Hence there does not exist a Calabi-Yau
manifold that describes this ground state. A second
theory in the space of all LG vacua with no antigenera-
tions is (2 )~6 described by a quartic polynomial in

C() ) ) ) 1 ~ 2) [4] corresponding again to a smooth mani-
fold with an obviously smooth manifold P(1 i ~ ) ) ) z)[4]

{g'=,z,'+.,' =0}.
Even though the examples discussed so far are all con-

cerned with critical vacua of central charge v=9 and the
way they are related to the new class of noncritical spaces
of dimension [3+2(g —

I )], it should be clear that these
considerations are not specific to this particular set of
string ground states. In [10] infinite classes of (n+ I)-
dimensional manifolds will be presented which describe
critical vacua of central charge e =3(n —

I ) and indeed
can be shown, via the constructions introduced above, to
lead to critical manifolds of complex dimension (n —

I ).
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Mirror symmetry cannot be understood in the frame-
work of Calabi-Yau manifolds. Assuming that this sym-
metry is indeed a symmetry of the space of left-right
symmetric vacua and that the geometrical framework is

general enough would lead one to suspect the existence of
a space of a new type of noncritical manifolds which con-
tain information about critical vacua, such as the mirrors
of rigid Calabi-Yau manifolds. Mirrors of spaces with
both sectors, antigenerations and generations are, howev-
er, again of Calabi- Yau type and hence the noncrit-
ical manifolds which correspond to such ground states
should make contact with Calabi-Yau manifolds in some
manner.

I t has been shown above that the class of higher dimen-
sional Kahler manifolds of type (2) generalizes the
framework of Calabi-Yau vacua in the desired way: For
particular types of such noncritical spaces Calabi-Yau
manifolds of critical dimension are embedded algebrai-
cally in a fibered submanifold. For string vacua which
cannot be described by Kahler manifolds, and which are
mirror candidates of rigid Calabi-Yau spaces, the higher
dimensional manifolds still lead to the spectrum of the
critical vacuum and a rationale emerges that explains
why a Calabi-Yau representation is not possible in such
theories. Thus these manifolds of dimension c/3+2(Q
—

I ) define an appropriate framework in which to discuss
mirror symmetry.

There are a number of important consequences that
follow from the results of the previous sections. First it
should be realized that the relevance of noncritical mani-
folds suggests the generalization of a conjecture regard-
ing the relation between superconformal field theories
with O'=1 spacetime supersymmetry and central charge
c=3D on the one hand, and KHhler manifolds of complex
dimension D with vanishing first Chem class on the other.
It was suggested by Gepner [l4] that this relation is one
to one. It follows from the results above that instead su-
perconformal theories of the above type are in cor-
respondence with Kahler manifolds of dimension c/3
+2(Q —

I ) with a first Chem class quantized in multiples
of the degree.

A second consequence is that the ideas of the section
regarding the relation between critical and noncritical
manifolds, lead, for a large class of LG theories, to a new
canonical prescription for the construction of the critical
manifold, if it exists, directly from the 2D field theory.

Recently Batyrev [15] introduced a new construction of
mirrors of Calabi-Yau manifolds based on dual polyhe-
dra. This method applies only to manifolds defined by
one polynomial in a weighted projective space or products
thereof. The method of toric geometry that is used in

[15] is, however, not restricted to Calabi-Yau manifolds
and therefore the constructions described in the critical/
noncritical manifolds section lead to the possibility of ex-
tending Batyrev's results to Calabi- Yau man ifolds of
codimension larger than 1 by proceeding via noncritical

manifolds.
It is clear that the emergence in string theory of mani-

folds with quantized first Chem class should be under-
stood better. The results presented here show that these
manifolds are not just auxiliary devices but may be as
physical as Calabi- Yau manifolds of critical dimension.
I n order to probe the structure of these models in more
depth it is important to obtain further insight into the
complete spectrum of these theories and to compute the
Yukawa couplings of the fields. The spectra of the higher
dimensional manifolds contain additional modes beyond
those that are related to the generations and antigenera-
tions of the critical vacuum, and the question arises what
physical interpretation these fields afford.

A better grasp on the complete spectrum of these
spaces should also give insight into a difTerent, if not com-
pletely independent, approach toward a deeper under-
standing of these higher dimensional manifolds, which is
to attempt the construction of consistent n. models defined
via these spaces.

I am grateful to CERN for hospitality and the theor-
ists there for lively discussions, in particular Per Ber-
glund, Philip Candelas, Wolfgang Lerche, and 3an Louis.
It is a pleasure to thank Herbert Clemens, Tristan
Hubsch, Cumrun Vafa, and Nick Warner for conversa-
tions and R. Hartshorne for asking the right question. I

am also grateful to the Aspen Center of Physics for hos-

pitalityy.

~"'~Electronic address: q25(~~ vm. urz. uni-heidelberg. de
[I] P. Candelas, M. Lynker, and R. Schimmrigk, Nucl. Phys.

B341, 383 (1990).
[2] M. Lynker and R. Schimmrigk, Phys. Lett. B 249, 237

(1990).
[3] P. Candelas, X. de la Ossa, P. Green, and L. Parkes,

Phys. Lett. B 258, 118 (1991); Nucl. Phys. B359, 21
(1991).

[4] S. Katz (private communication).
[5] B. R. Greene and R. Plesser, Nucl. Phys. B338, 15

(1990).
[6] P. Candelas, in Proceedings of the Workshop on

Geometry and Quantum Field Theory, Baltimore, March,
1992 (unpublished).

[7] P. Candelas, E. Derrick, and L Parkes (to be published).
[8] C. Vafa, Harvard University Report No. HUTP-91/

A059 (to be published).
[9] P. Candelas, Nucl. Phys. B298, 458 (1988).

[10] R. Schimmrigk (to be published).
[11]R. Schimmrigk, Phys. Lett. B 193, 175 (1987).
[12] R. Schimmrigk, Phys. Lett. B 229, 227 (1989).
[13] P. Candelas, A. Dale, C. A. Liitken, and R. Schimmrigk,

Nucl. Phys. B298, 493 (1988).
[14] D. Gepner, Phys. Lett. B 199, 380 (1987).
[15] V. V. Batyrev, University of Essen report (to be pub-

lished).

3691


