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Black Hole Entropy and Higher-Curvature Interactions
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A general formula for the entropy of stationary black holes in Lovelock higher-curvature gravity
theories is obtained by integrating the first law of black hole mechanics, which is derived by Hamil-
tonian methods. The entropy is not simply one quarter of the surface area of the horizon, but also
includes a sum of intrinsic curvature invariants integrated over a cross section of the horizon.
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The study of black hole thermodynamics is motivated
primarily by the hope of learning something about the
nature of quantum gravity. Probing the limits of validity
of the four laws of black hole thermodynamics [1] may
provide one source of insight in this context. For in-
stance, one would like to know to what extent these laws
are valid when the back-reaction of quantum field energy
is taken into account. Back-reaction leads to the consid-
eration of higher-curvature interactions, which arise from
quantum field renormalization [2]. This observation rno-
tivates the investigation of black hole thermodynamics in
higher-curvature theories of gravity. Another motivation
comes from string theory, where the low energy effective
Beld theory of gravity contains higher-curvature terms
[3]

In this Letter, we focus on a special class of higher-
curvature theories, called Lovelock gravity [4]. These the-
ories are the most general second-order gravity theories
in higher dimensional spacetimes. Higher dimensional
s acetimes are of interest in several candidate frame-

to what extent the laws of black hole thermodynamics
apply [8].

Using the Euclidean approach [9], it is clear many of
the essential features survive. Given a speciBc station-
ary solution, a Euclidean section is obtained by analytic
continuation. Regularity of this section requires identify-
ing the Killing time coordinate with a period P = 2x /K
(r defined below). This section is regarded as a back-
ground in a periodic Euclidean path integral, which is
interpreted as giving a thermodynamic partition function
Z with inverse temperature P. In a semiclassical approx-
imation, the Euclidean action I, regarded as a function
of P and the extensive parameters (such as the angular
momentum, J), is identified with —ln Z. One defines the
internal energy and entropy as

BI OI
~/3' ~P

(2)

which then automatically satisfy the first law
p

works for unifying gravity with other interactions. More- TbS=bU —
I
T I6J.

over in higher dimensions with Lovelock theory, one can &J)
explore the effect of higher-curvature terms in black hole This result reproduces the first Iaw of black hole meehan
thermodynamics without having to deal with complica- ics if II = M, the black hole mass, and (TgI/gJ) = fI
tions that arise in true higher derivative theories. The the angular velocity of the horizon.
Lagrangian density for Lovelock gravity in a spacetime appear to hold in the present context (i.e. , }ugher curva;
of dimension D may be written 2 = p =o cmZm where tures and/or higher dimensions), and it may be possible

tD/2l

to prove them by extending the methods of Ref. [10].
+m. (g) = v g bc d .. . ™d +aqbq ' ' ' +a b One might expect that S coincides with one quarter the

surface area of the horizon [11] as in Einstein gravity,
but this identity fails in Lovelock gravity [7, 8], and other

and Zo = v' —g [5], and in the sum, [D/2] indicates the higher-curvature theories [12].
integer part of D/2. The b' symbol is a totally antisym- As described above, the Euclidean approach is applied
metric product of 2m Kronecker deltas, normalized to to investigate known stationary solutions. While this
take values 0 and +1. Note Zi ——vI —gR by itself yields yields S as a function of the solution's parameters, it pro-
the Einstein Lagrangian. In general, 2 is the Euler class vides no guidance as to any geometric significance of the
for a 2m-dimensional manifold. Because of the antisym — black hole entropy. It also fails to provide a deBnition
metrization, no derivative appears at higher than second for S that generalizes to an arbitrary, time-dependent
order in the equations of motion. Static, spherically syrn- horizon, without which it is difBcult to see how to even
metric black hole solutions have been found for Lovelock address the question of whether a classical second law
gravity [6, 7], and given these solutions, one can examine is obeyed in "nonequilibrium" processes. However, it is
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also possible to work with the Euclidean approach with-
out specific solutions in mind [10, 13]. (Indeed, this has
recently been done for static metrics in Lovelock grav-
ity with only ci and c2 nonvanishing [14].) In this more
general fashion, it may be possible to avoid the above
mentioned drawbacks of the Euclidean approach.

Our alternate approach is to find the variation 6S of
the entropy by deriving a general form of the first law of
black hole mechanics following the Hamiltonian method
introduced by Sudarsky and Wald [15]. The method of
Ref. [15] applies to Killing horizons. A Killing horizon
is a null hypersurface whose null generators are tangent
to a Killing field. In four-dimensional Einstein gravity,
Hawking proved that a stationary black hole event hori-
zon must be a Killing horizon [16]. This proof cannot
obviously be generalized to Lovelock gravity, but the re-
sult is certainly true for all the known solutions (which,
however, are all static).

If y is the Killing field which is null on the horizon,
the surface gravity r can be defined by y"7'gy
Assuming that the null generators of the horizon can be
extended to the past as complete geodesics, three im-
portant properties follow: (i) K is constant over the en-
tire horizon [17]. (ii) There exists a (D —2)-dimensional
spacelike cross-section B of the horizon on which y van-
ishes [17]. B is called the bifurcation surface (iii) .The
extrinsic curvature of B vanishes [18]. A further property
of Killing horizons that is important for our purposes is
that any two spacelike slices of the horizon are isometric.

Let ( be the Killing field that is asymptotically a pure
time translation. Then by suitably rescaling y, one is
able to reduce the Killing field g —( to a rotation.
In higher dimensions, there are [(D —1)/2] commuting
Killing fields P& i generating rotations in totally orthog-
onal planes [19], and so one has

a (a + g(cxiya

Next, we briefly present the Hamiltonian description
of Lovelock gravity [20], which will be necessary in the
following derivation of the first law. As usual after split-
ting space and time, the dynamical variables on a spatial
surface Z are the spatial metric h i„and its conjugate
momentum m. ~~ [5]. In the present case, sr~~ is a compli-
cated function of both the extrinsic and intrinsic curva-
tures of Z [20]. The normal and spatial components of
the time flow vector field t~, the lapse N and shift N, are
arbitrary I agrange multipliers in the Hamiltonian. For
asymptotically Bat space, the Hamiltonian has two parts
H = H~ + H~. The volume term H~ is a combination
of constraints 'H~ and 'R,

d x(N'H~+ N 'H )

and hence vanishes when evaluated for solutions of the
field equations. 'H is the generator of spatial diffeo-
morphisms in Z, and so, as in Einstein gravity, 'H~ =

—2Dg(vr ), where D~ is the covariant derivative com-
patible with h b

'.H~ generates normal deformations of
Z, and one finds 'H~ = Zc 'Hz with

(~) & a1b1" a b ~ c1d1 ~ c d
2m c1d1" c d a1b1 ''' a b

where R~b'" is the full D-dimensional curvature tensor.
Since R~g'" is projected into Z, it can be replaced by
R b'd + 2Kt 'KbI". Here B b'" is the curvature of h b,
and K b is the extrinsic curvature of Z, which is re-
garded as a function of h b and vr [21]. The 6 sym-
bol is the antisymmetric product of projected Kronecker
deltas, 6, = 6, + n n, where n is the unit normal to Z.

The Hamiltonian also has an asymptotic bound-
ary term, just as in Einstein gravity [22], Hs

d z (NS~ + N S ). Hs is added to cancel surface
terms which arise by integrating by parts in Hv when
generating the Hamiltonian flow equations. The precise
value of Hg depends on the choice of t = Nn + N .
If asymptotically t ~ (, the time translation Killing
field, then Hg = M, the total mass of the solution. If

~ /~i i, a rotational Killing field, then Hs = —Ji i,
the associated angular momentum.

The derivation of the first law comes from a judicious
evaluation of the Hamiltonian [15]. Let h b and ~ de-
scribe a stationary black hole solution, and choose the
"time" flow field to be the Killing field that is null on the
horizon, t = y = (~+A' 'P~& i. Evaluate H on a space-
like slice Z that extends from asymptotic infinity to the
horizon, intersecting the horizon at the bifurcation sur-
face, B. With these choices one has H = M —O' ' J( ).
Let (6h b, 6+~~) be a perturbation of the initial solution
to any nearby solution —not necessarily stationary. With
t~ and Z fixed, one has

On the other hand, one has Hamilton's equations

d 'x (2 h, i, &' —2 vr 6h, i,) +6H~ .

The volume term vanishes because the flow is along a
Killing field, Z~h b = 0 = Z~vr b. Integration by parts
is needed to produce these volume terms. The surface
terms at asymptotic infinity are canceled by the variation6', but one is left with surface terms, denoted 6H~, at
the inner boundary of Z.

Since bH~ is evaluated on the bifurcation surface B
where t = y vanishes, any nonvanishing terms involve
derivatives of t . Such terms only arise from the metric
variation of the curvatures in NQ~. Two integrations by
parts arise from $Q b

" ———2D( Dt'pgbj "~ + Q b'~'fQ, "~,

where bh~" = h" bh~b. The Erst integration yields new
volume integrals involving D ¹ In these integrals, the
second integration by parts produces a boundary term at
B involving D ¹ The contribution from 'Hz is
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bH(~) ~ dD —2 ~h cy D ~ b44zbz 44' b bh d4 g cgd2 B c d

gm —1 G1 cl~lc2'''~m b1 a2b2 ' ' ambm
B

where v' is the unit normal to the bifurcation surface
B, pointing into Z, and l2 is the determinant of h b, the
induced metric on B. Now it is not hard to show that,
at B, D~N = zv~, where K is the surface gravity. Since
vQ 1 v 6c g g 6g g, the ant isymmetrized product
of Kronecker deltas b, = b, + n~n, —v v, projected into
B, all remaining tensors are fully projected into B. The
projected bhbd yields btibd = hd'bhb, Since. the extrinsic

curvature of the bifurcation surface B vanishes, project-
ing R b'" yields the intrinsic curvature B b'" of h b.

Thus far variations of the K b terms in B b'" were
neglected. Regarded as a function of vr and h b, K b

involves R~b'" and so could produce extra boundary con-
tributions. These extra terms always vanish, however,
since they contain at least one other factor of K~b which
vanishes when projected into B. Since z is a constant on
B, Eq. (3) thus becomes

d -'* v~kd' ' 'd-h -'-" A -'-)d, ".c d b1
' ' ' ~ b

B

We now recognize bS~ ) —= (2x/r)b'Hz as the variation
of 4vrmc~g&d zZ. i(h), with 2 as defined in Eq.
(1).

Collecting all of the contributions to the entropy, our
final result is the first law of black hole mechanics in
Lovelock gravity, bM —0' 'b J& i

——(r/2vr)b'S, where

[D/2]
d= ) 4cmc $d ccL g(h) .

m=1
(4)

Our derivation of the first law relied heavily on the fact
that the variation of the entropy is evaluated on the bifur-
cation surface B. Nevertheless, the integrated expression
(4) for the entropy of a stationary black hole can be eval-
uated on any spacelike slice of the Killing horizon, since
all such slices are isometric. Note that with ci = 1/16+G,
as appropriate for the Einstein action, the first term in
the sum is simply A/(4G), where A is the surface area of
the horizon. Remarkably the entropy (4) is identical in
form to the original action, evaluated in a (Riemannian)
space of dimension D —2, with c 1 replaced by 47I.mc

For even dimensions, we have included a nontrivial in-
tegration constant in Eq. (4). This constant is the con-
tribution of ZDg2 1, which yields the Euler constant of
the cross section of the horizon. In four dimensions, this
constant is fixed for all stationary black holes since the
horizon must have the topology of S2 x R [16]. In D&4,
the horizon topology is not unique, so this topological
entropy may have more significance. With this choice
for integration constant one easily confirms that for the
known black hole solutions [6], Eq. (4) produces the same
result as Eq. (2) in the Euclidean approach [8] (provided,
of course, that c~yz is identical for both approaches).
These results are easily extended to include Maxwell or
Yang-Mills fields [15].

Our results extend the framework of black hole ther-
modynamics in a natural way to Lovelock gravity. The
zeroth law (i.e. , the constancy of i2) holds modulo the
assumption that the horizon generators are geodesically
complete (or, if the black hole forms from collapse, that
the horizon generators of the stationary solution which

it approaches have this property). The first law defines
an entropy that is localized in the intrinsic geometry of
the horizon and is valid for all stationary black holes, at
least provided the event horizon is a Killing horizon. For
example, Eq. (4) applies for rotating black hole solutions,
which are as yet unknown. If all the coefIicients cm are
of the same order in units of some common length scale,
then the area term (m = 1) dominates the entropy for
black holes that are much larger than that scale. The en-
tropy of small black holes can be negative, but for fixed
c~ it is bounded below for the known solutions [8]. Such
negative values are thermodynamically benign, since only
changes of the entropy occur in the first law.

The second law for quasistationary processes follows
from the first law, provided the quantity bM —0' '6J& )
is positive. This is the case for fIuxes of positive en-
ergy matter [23]. To control the sign for fluxes includ-
ing gravitational energy would require a positive energy
theorem for Lovelock gravity, which has not been estab-
lished [24]. (Negative energy states would probably make
the theory unstable, however. ) Alternatively, the second
law in Einstein gravity can be derived from Hawking's
area theorem [16] which shows that, even in nonquasi-
stationary processes, the area (and therefore the entropy)
will never decrease. In Lovelock gravity the expression
(4) for the entropy is at least meaningful on a slice of
a time-dependent horizon, so one might hope to prove
a nonequilibrium second law by similarly following the
evolution of the horizon. This remains an interesting
problem for future work. In this connection curiously,
note that with c~gz & 0 the topological term in Eq. (4)
could lead to violations of the second law when two black
holes coalesce, even in four dimensions.

When quantum fields are included, negative energy can
be transferred to the black hole, as in Hawking evapora-
tion [25] or "mining" [26] processes. The interesting ques-
tion is then whether the generalized second law (GSL)
[b(SBH + So„2„d,) & 0] holds. (Validity of the class2cal
second law for SBH alone would seem to be a prereq-
uisite for validity of the GSL.) There exist arguments

3686



VOLUME 70, NUMBER 24 PHYSICAL REVIEW LETTERS 14 JUNE 1993

[27] in support of the GSL in Einstein gravity, and these
carry over to Lovelock gravity as far as the contribution
of matter fields is concerned. However, these arguments
apply only to quasistationary processes and, moreover,
the gravitational contributions in Lovelock theories are
not yet fully understood. Thus the validity of the GSL
remains an important open problem.

Finally, Lovelock gravity is only a very special case of
possible generally covariant gravity theories. The fact
that the entropy is not one quarter the surface area, is
already known in many other examples of theories with
higher-curvature interactions [12]. If one derives a first
law via the method of Sudarsky and Wald as we have
done here, the variation of the entropy will again be given
as an integral over the bifurcation surface of the horizon.
However, this expression will not in general depend only
on the intrinsic geometry of the horizon, and it is not
even clear that it will be the variation of some quan-
tity defined locally at the horizon (although, from the
Euclidean approach, Ref. [14] argues that the entropy
is alioays a quantity defined locally at the horizon). In
fact, the particular properties of Lovelock gravity played
a crucial role in our calculations establishing the local
and intrinsic nature of the entropy.
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