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Point masses moving in 2+1 dimensions draw out braids in space-time.

If they move under the

influence of some pairwise potential, what braid types are possible? By starting with fictional paths of
the desired topology and “‘relaxing” them by minimizing the action, we explore the braid types of poten-
tials of the form V o r® from a < — 2, where all braid types occur, to @ =2, where the system is integr-
able. We also discuss issues of symmetry and stability. We propose this kind of topological classification
as a tool for extending the ““symbolic dynamics’ approach to many-body dynamics.

PACS numbers: 03.20.+i, 02.40.—k

In studying low-dimensional dynamical systems, it is
common to partition the phase space into a finite number
of areas, and then write a sequence of symbols according
to which parts of the phase space the trajectory passes
through. The set of all sequences the system can gen-
erate is called the symbolic dynamics or language of the
system [1], and is often a useful tool for classifying the
system’s behavior.

But in higher-dimensional systems this approach be-
comes clumsy. We lack natural boundaries around which
to partition the space. In this paper, we propose a more
natural, topological approach to classifying high-dimen-
sional systems, in this case the motion of n bodies in the
plane.

Consider n particles in the plane. As they move, they
draw out a braid of n strands in a three-dimensional
space-time, winding around and linking with each other.
This braid can be thought of as a topological classifi-
cation of the motion. If these masses move under some
potential ¥, we can ask: What braids actually occur as
periodic orbits? That is, for what topological classes does
a periodic orbit exist?

Trajectories of a Hamiltonian dynamical system ex-
tremize the action S=f.L, where £L=K—V is the La-
grangian; in this sense, they are geodesics on Cx R, the
configuration space-time where C=R" is the configura-
tion space. Let Cij={x € C:x,-=x,-} be the set of
configurations where the /ith and jth masses collide; then
the vicinities of the C;; have some negative curvature,

since trajectories bend around them as a geodesic would
around a throat or spike.

We can use this extremal principle to look for geodesics
of a given topological class, by starting out with a fiction-
al path in that class and then “elasticizing” it to minimize
S. If it reaches equilibrium while maintaining its topolo-
gy, we will have found what we are looking for.

Specifically, we operate on trajectories with a relaxa-
tion dynamic, a functional differential equation in a
fictional time t:

2
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This has the effect of adjusting a trajectory’s curvature
until it matches the correct acceleration: If 9.x=0,
a=d?*x/dt>=F/m, so an equilibrium is a genuine trajec-
tory of the system. (An analogous relaxation was used in
[2] to find periodic points of the Henon map.)

This “relaxation dynamic” (1) preserves time, but not
energy, momentum, or angular momentum. We can have
no chaos or limit cycles in this relaxation since the action

8.5=—m [(@.x)2d =0

strictly decreases.

If we start with a fictional path of the desired topology,
and apply this relaxation process, only one of three things
can happen: (1) One of the masses “‘escapes,” i.e., it
tends to infinity as t increases; (2) a collision, i.e., two of
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the masses coincide in the course of the relaxation, break-
ing the topology by moving one strand through another;
(3) equilibrium, i.e., a valid trajectory is found in the
desired class.

Throughout, we will assume that the potential is a
power law, proportional to the product of the masses:

V=2V, Vij=Amm;rf.
2

We wish to show that for certain values of @ (1) and (2)
can be eliminated, leaving us only with (3).

First, we show that relaxation never leads to escape, as
long as a <2, and as long as the braid is inseparable, i.e.,
the strands cannot be separated into two isolated subsets,
so one mass cannot drift off to infinity without some other
masses coming out to tangle with it. These masses in
turn have to tangle with other masses, and so on across
the configuration. [So, for instance, we are excluding an
initial configuration consisting of two masses at rest, since
clearly the dynamic (1) will push these two away from
each other to infinity.]

If the entire configuration has a diameter d, then the
masses have to travel a total distance of at least 2d, since
they return to their original positions. Since the period T
remains fixed as we relax, escape would cause the kinetic
term of the action to go to infinity:

sz +mQd/T)*— o as d— oo

Since Vacd?, if a <2, the potential term is smaller in
magnitude than the kinetic for large 4 and the total ac-
tion, S=[K —V, becomes positively infinite. But since
we start with a fictional path of finite action and then de-
crease it, this is a contradiction. So escape is impossible
if a <2.

We next show that, for a < — 2, relaxation never leads
to collision; i.e.,, relaxation will not draw one mass
through another. This is simply because the action of a
colliding path is infinite for a =< —2. If a unit mass falls
from rest at a distance R, the action is

S=fm—mm=ﬁﬁk—mmh

= _ a) 1/2 ! 2r*—1

RARDY
for a <0, 4A<0. As r— 0, the integrand approaches
r*?, so it diverges if a < —2; since falling from rest gives
a lower bound for K, the action diverges for any colliding
path. By the same token as before, then, collision is im-
possible. These two results tell us that for a < —2 (.e.,
for a 1/r3 or “harder” force), all topological classes con-
tain an orbit; you can find a periodic orbit equivalent to
any braid you like.

For larger a, the action of a colliding path is finite and
collision is no longer impossible. In the geodesic analogy,
for a = —2, the Cj; are throats of infinite height; for
larger a they are spikes of finite height, until at « =2 they
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become smooth hillocks. Whether or not a path will be
drawn across them as it relaxes depends on its curvature,
namely, on the total amount of winding of one mass
around another that the path is trying to achieve. A typi-
cal orbit will have some critical a, above which it will not
exist.

Suppose that two masses pass by each other in a “close
encounter,” such that the distance r between them is
much smaller than the distance R to the next closest
mass. (For a <2 it is easy to show that we can neglect
the effect of the other masses on the pair’s relaxation, i.e.,
that the tidal forces are negligible to the force between
them; so we can look at the pair in a free-fall frame by
subtracting their acceleration from their 9.x.) Then if
they orbit around their common center of mass, their dis-
tance alternates between rpyi, (perihelion) and rpax
(aphelion). In the limit of a close encounter, i.e., as
Fmin/Fmax— 0, the angle ® between successive perihelia
and aphelia is 7/(a+2) for a <2, and 7/4 for a= 2 [3].
For instance, for a=—1 (normal gravity) ®=n, and
perihelion and aphelion are on opposite ends of an ellipse;
as a approaches —2, ® goes to infinity. For a < —2
there is an unstable circular orbit we can approach and
hang around for as long as we like before reemerging, so
O =00,

@ is a rough measure of the amount of winding a close
encounter can achieve for a given a, before going back
out to “infinity” to interact with other masses. Roughly
speaking, if two strands cross n times before tangling with
others, they have an angle ® =nx/2 between perihelion
and aphelion, so such a braid would exist if ¢ < 2/n —2.

We now consider the special case of @ =2, when the
system is integrable. The potential factors into

%Zmimj(r,' —rj)2=ZMm,-(r,~ “‘7)2 .
17 1

where M =3 ;m; and F=(1/M)X;m;r; so all masses or-
bit harmonically around the center of mass. Therefore,
only a small subset of braid types can occur; we will call
these braids harmonic. In particular, the winding num-
ber of any pair of masses in a harmonic braid must be
*+ 1. We prove this as follows: All the masses go around
the center of mass with the same period, with winding
number +1 (counterclockwise), —1 (clockwise), or O
(passing through it). But since the system is linear, this
is true for the difference between any two masses as well.
If this difference passes through the origin, there is a col-
lision; otherwise, the winding number of those two masses
around each other is £ 1.

At a= —2, then, all braids exist; as a increases, braids
are lost as the winding angles required to sustain them
exceed what a close encounter can provide, until at a =2
only harmonic braids remain. For any a, the set of al-
lowed braids L, constitutes a “language” that can be
thought of as a classification of the dynamics.

In Table I we show the first few braids of 2 and 3
strands, and report numerical results about their ex-
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TABLE I. The first few braids of 2 and 3 strands and the a
for which they exist.

braid b; orbit existence
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istence. We use the standard notation for a braid of n
strands, where b; corresponds to the crossing the ith
strand over the (i +1)st; these operators satisfy the rela-
tions

TEURIEE
and

With these relations, the b; generate B,, the braid group
on n strands.

We now discuss several aspects of L,, such as symme-
try. The astute reader will note that the second, fifth, and
seventh braids in Table I are topologically equivalent:
For instance, using the second relation on the b; we get
(b1b3)3=(b{b3)2. However, unlike the two equivalent
forms of the last braid, these three do not coincide be-
cause they have different symmetries.

Let ¢, ¢, and o be time translation, rotation, and per-

S

a<—-1.0+£0.06

5

(b3631)

b1baby b2bi b5 !

= b2byby 2b, at least o <2

mutation operators, respectively. Then the second braid,
where a fixed mass is orbited by two others, has t(7/2)
=0(23), and the fifth has 1(7/3) =0(123); these two
also obey the continuous symmetry ¢(8) =t(6T/2r).
The seventh, on the other hand, obeys 1(7T/2) =c(23)
but has no continuous symmetry.

Since the relaxation dynamic (1) preserves all these
symmetries, as well as reflections and time reversal, a
fictional path with a given symmetry group S can only re-
lax to an equilibrium with an equal or larger symmetry
S'DS. This can sometimes be used to show that the
equilibria, if they exist, must be distinct. For instance,
the smallest S’ containing the symmetries of both the
second and fifth braids has ¢(123) =1, the identity; so all
three masses would have to coincide for these two braids
to merge.

Another apparent property of L, is that L,CLg if
a> fB; in other words, as a increases braids disappear but
never reappear. This would give L, a pleasant monotoni-
city, like the set of symbol strings generated by the logis-
tic map as its height increases [4].

We can justify monotonicity as follows. Suppose a
braid exists at a. Decreasing a slightly is a small pertur-
bation; if the system is differentiable around the orbit, the
perturbed system should have another periodic orbit near-
by the original braid. We only lose differentiability in a
collision, but the forces in a close encounter increase if we
decrease a, so we can achieve the same curvature at a
larger distance. So decreasing a will move us away from
a collision, and the braid will still exist.

Our assumption that the perturbed system will have a
periodic orbit close to the original one, however, is only
true if the matrix of first derivatives around the orbit is
bounded away from the identity, i.e., if the orbit is not
dynamically neutral. This suggests a simple counterex-
ample, namely, noncircular two-body orbits. Although
the circular two-body orbit exists for all a, only for
a=—1 and a=2 do elliptical orbits exist [3]; these are
neutral, as are all orbits if a=2. But except for special
cases like these we can expect L, to be monotonic.

What is the dynamic stability of these orbits? Circular
orbits are stable for a> —2, and unstable for a < —2
[3], and of course all orbits are stable for the integrable
case a =2. Are there any other stable periodic orbits for,
say, normal gravity at a= —1? There are. The figure-8
braid (b,b5 ')3 is stable (numerically) for a > —1.24 or
so. As a is decreased, a nearby orbit begins to precess; at
—1.26 this precession oscillates irregularly, and finally at
—1.27 it becomes so severe that the masses fly apart and
the topology is lost. Similarly, the braid bbb %b, is
stable at @ = —1; as a decreases it begins to precess until
at —1.34 the masses escape. As a decreases further
there appear to be windows of wildly precessing, but
bound, behavior. (These values of a are for 60 and 40
points per period, respectively; they change somewhat if
we increase the resolution.)
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This behavior can be explained as follows. Consider a
return map of time 7. Since the system is rotationally
symmetric, we can separate out an angular variable ¢,
giving a map on the other degrees of freedom and a con-
tinuously varying rate of precession A¢. An orbit of
period T becomes a fixed point where Ag =0. It is sur-
rounded by a series of KAM tori [5], containing various
stable and unstable periodic points with different A¢; as
the system explores these, its precession rate can vary
quasiperiodically. As a changes, these tori break and
cease to bound the motion, allowing the orbit to diffuse
away and fall apart. (Of course, if # > 2 we have more
than 2 degrees of freedom, and the tori do not divide the
space, so Arnol'd diffusion can occur even if they are in-
tact.) It appears that for a <2, all periodic orbits are
unstable.

Another type of stability we can consider is that of the
relaxation process, namely, is the trajectory a minimum,
maximum, or saddle point of the action? Since the kinet-
ic and potential terms of S scale as r?and re, respective-
ly, it is easy to show that no closed trajectory can be a
maximum of the S for a <2, or a minimum if a> 2.
(For a=2, the system is harmonic and S is independent
of r.)

In fact, many of the above braids have a critical value
of a below which they are minima, but above which they
become saddle points. In particular, they remain minima
in their symmetric subspace, but these symmetries be-
come unstable. For instance, for a <1 the circular two-
body orbit is a minimum; at ¢ = — | there is a continuum
of elliptic orbits of different eccentricities; for a> — 1,
these become a trough of decreasing action, making the
circular orbit an unstable saddle point. Similarly, for
a> — 1.3 the figure-8 orbit becomes a saddle, and the
permutation symmetry becomes unstable (i.e., from a
perturbed orbit the three masses relax to increasingly
different orbits). Note that the critical a at which an or-
bit becomes unstable in the action-minimizing sense is
not necessarily the same a at which it becomes dynami-
cally unstable.

Unfortunately, our action-minimizing algorithm will
not find orbits which are saddles in S, unless the initial
orbit is on the ridge (for instance, in a symmetric sub-
space in which the orbit is a minimum). Finding saddle
points in a high-dimensional space is very difficult.

In conclusion, we have used an action-minimizing re-
laxation to directly construct periodic solutions to the n-
body problem. This extends the work of Lagrange [6],
who studied solutions which are fixed in a rotating frame;
Hill, Perron, Crandall [7-9], and others who construct
three- and four-body orbits by replacing one mass in the
two-body problem with two or more masses placed closed
together (a “cabling” in the terminology of braids); and
work on the “restricted” three-body problem [10], where
one of the masses is zero.

Why might it be useful to classify these orbits in terms

3678

of braids? In finite-dimensional dynamical systems, we
often assign a symbol sequence to each trajectory as it
visits different parts of the phase space: For instance, in
the logistic map we can write down a sequence of L’s and
R’s as the point visits the left and right halves of the in-
terval. The set or language of all possible sequences then
defines the symbolic dynamics of the system [1].

With this topological information in hand, many calcu-
lations become easier; periodic points can be enumerated
and classified, and many quantities like Liapunov ex-
ponents and escape rates can be written in terms of rapid-
ly converging series [11]. Symbolic dynamics also gives
us a clear way to measure the system’s complexity (e.g.,
[4D).

Topological classifications like the one used here could
be a good substitute for symbolic dynamics in high-
dimensional systems where there are no good topological
boundaries around which to partition the space, or where
the number of degrees of freedom varies (our braids ap-
proach works equally well for any n). Knot types have
already been used to classify periodic points in three-
dimensional flows such as the Lorenz attractor [12,13].

What can we do in 3+1 or more dimensions? Knot
and link types no longer exist, since in a four- or more-
dimensional space-time any knot can be untied. Perhaps
one could use a higher homology group, or study mani-
folds swept out by families of trajectories, rather than
single trajectories.

Finally, since enumerating periodic points of the classi-
cal system has proved useful in studying quantum chaos
[14], and since braid and knot theory has been of interest
recently in quantum field theory, it is tempting to suggest
there might be relevance here to quantum gravity. Could
gravitational interactions be written as series where each
term corresponds to a particular braid? Since all braids
exist for a =< —2, is there some sense in which gravity is
easier to solve for d = 4 (just as the logistic map becomes
ergodic when all sequences are possible)? Some addition-
al conjectures, and numerical considerations, are raised in
[15].
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