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New Symmetries of the Vacuum Einstein Equations
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Some new symmetry algebras are found for the vacuum Einstein equations. Among them there exists
an infinite-dimensional algebra representing the symmetries analogous to the generalized symmetries of
the integrable nonlinear partial differential equations.
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In the last decade we observed an increase in the in-

terest on the integrability of the Einstein equations
without any spacetime symmetry [1—15]. The main pur-

pose of these eAorts is to understand up to what degree
the Einstein field equations possess the properties of
the integrable nonlinear partial difterential equations
(PDE's). It is now a fact that the tetrad formalism, in

particular the SL(2, C)-valued differential forms are more
suitable for this purpose. So far it has been shown that
the Einstein equations admit nontrivial prolongations
[4,5] and Backlund transformations [5,7,9]. In this work
we shall show that these equations share another property
of the integrable nonlinear PDE's. They admit infinitely

many nontrivial symmetries which is a common feature
of the integrable nonlinear PDE's. We also show that ex-
ponentiating these symmetries leads to formal solutions of
the vacuum Einstein equations.

Symmetries and the group invariant solutions of PDE's
play an important role in obtaining exact solutions of
these equations. They may in general be divided into two

parts as the Lie and generalized symmetries. All these
symmetries are the solutions of the linearized equations
of PDE's under consideration. In particular if a non-

linear PDE has at least one generalized symmetry it is

conjectured that this equation is integrable and in this
case there is now an algorithm to produce infinitely many
of them [16-18]. This leads to the construction of
infinitely many conserved quantities and bi-Hamiltonian

structures. As an illustration let us give some examples
from the Korteweg-de Vries (KdV) equation, q, =6qq
+q „„. Let q(t, x, e) be a one-parameter solution of this
equation. p =t)q/t)e!, =tt solves the linearized equation

e =6qe. +6q.a+e...
A class of solutions of (1) is given by p„=N"q„(n

=1,2, . . .), where @=D +4q+2q„D ' is the recursion
operator which transforms symmetries to symmetries.
Here D 'q(t, x) =I"— q(t, x')dx' and Dq =q . These
solutions define the following symmetries (IIows):

~~q= P~ =q-
62q—=$2=q „„+6qq

63q = tt 3
=q „„,+ 10qq „„+20q, q„,+ 30q q, .2

q(t x k) x
k

x +k22( —x +2t) +k
6t 3 6t5

+k42x ( —7x +96t) + s 2( —21xs+51
6t9 6t

All such formal solutions corresponding to generalized
symmetries are infinite series and have no closed form.
Formally they are represented as q(t, x, e) =e' q(t, x).
This way one may also generate multiparameter solu-
tipns. Here the prder pf the pperatprs e ' 'p ' ' is npt
important because the operators B„commute.

The vacuum field equations in null tetrad formalism
are more convenient for our purpose. The SL(2,C)-
valued tetrad I-form o and sl(2, C)-valued connection I-
form I are defined as follows:

2x t —392t ) +ll

I 0 I"2

=r, —r, (3)

where

I n
= yl+ en —am —Pm*,

I l
= —il —&en+ pm+ am*,

I 2
= vl+xn —Xm —pm*.

Here l, n, rn, and m * are the null tetrad 1 -forms,
a, P, y, . . . are the Newmann-Penrose spin coe%cients.
An asterisk denotes the complex conjugation. I and o.

(2)

All these symmetries commute; [8,8„]=0 for all m

and n. Exponentiating these we obtain group invariant
solutions of the KdV equation. For each n we have

different solutions given by q(t, x, e„)=e " "q(t,x). For
n= 1 and n=2 we have the group invariant solutions

q(t, x, e~) =q(t, x+e~) and q(t, x, e2) =q(t+e2, x) which

correspond, respectively, to the translations in the x and t

directions. For n & 2 we have higher symmetries and

they do not have closed-form expressions. As a simple
example let us consider the first generalized symmetry
(n=3) and take q = —x/6t as a solution of the KdV

!
equation. Then we obtain a one-parameter solution as
(below we have set and e3 =6k/5)

5x +32t)
6t'
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are related through the f'ollowing equation (definition of
the torsionless connection):

do = —I o+oI t,

malism the vacuum Einstein field equations have the fol-
lowing form:

so= (dr+ rr) ~ =o.
where f denotes the Hermitian conjugation. In this for- Here R is the sl(2, C)-valued curvature 2-form which is

given as R =Vcr with

—e&(l n—) —+3m+ e~m * —+3(l n) ——%4m+ e&m*

'Ir
~ (l —n ) + 'Ir pm —'Irpm 'Ir q (l —n ) + I"3m —4'

~
m

(7)

H ere +0,+~, . . . , +4 are the Weyl spinors.
Let the set (cr(Ep), I (Ep)) be a one-parameter solution

of the vacuum field equations. Then the set (t, cp), de-
fined through cr(ep) =rT+Ept+ . . and I (ep) =I +Epcp
+ .

, satisfy the linearized vacuum equations

t = —Dg, N(y=Qg . (i 3)
Here 2 is an arbitrary Hermitian 2&2 matrix. The 1-
form N can be obtained as follows. Let

Dt+ cger —crept =0, D(cocr)+Rt =0. (s) a b
(i 4)

Here D denotes the covariant exterior derivative. We
have recently shown that solutions of the above linearized
equations play an essential role in obtaining Backlund
transformations [5,7]. In this work we show that each
solution of these equations leads to a symmetry of the
vacuum field equations (5) and (6).

We shall now present some types of symmetries of the
vacuum equations. These symmetries are in fact the solu-
tions of the linearized vacuum Einstein equations. We
have the following types.

Type (a): The following set (t, co) satisfies the linear-
ized vacuum equations; hence it is a symmetry of the vac-
uum Einstein field equations

t =To+ oX~, N = —DX,

where A' is an arbitrary traceless 2&2 matrix and D is the
covariant exterior derivative. Let us denote the generator
of this infinitesimal transformation as 6~, i.e.,

where a, c are real and b is a complex function. Then

No N2

N~ No

where

cop = (b+ )+c+p) n —(a%'p+ b *+3)1
—(bep+c+3)m+( ea)+b*ep)m*,

cp) = —(bep+ce))n+ (ae)+b +g)l

+ (be~+co&)m —(aep+b*e~)m*,

cop = (bep+ ce3)n —( ea' +3b* e4) l

—(b+3+ c@4)m+ (a+&+b*e3)m *
.

The above solution (13) of the vacuum equations
defines a symmetry which we denote as 6 . It is given by

t =5~g, N =6~I (io) a'~= —Dw, (s"r)~=zw. (i 6)

Ia =a+a 6'o.+ . . =e ae (i2)

then it is straightforward to show that

[~x,~v] =~iv, xi .

This is the local sl(2, C) algebra. Exponentiating the
infinitesimal transformation we obtain

This symmetry is a function of the connection and curva-
ture. The commutator of type (a) and type (b) sym-
metries gives a type (b) symmetry, i.e.,

(i7)
where C =XX +AXt. Exponentiation of type (b) sym-
metry does not give a closed-form expression like that of
type (a). It reads

Such tetrad transformations constitute the gauge group,
namely, the group SL(2, C), of the Einstein theory which
leaves the metric unchanged. Hence they do not give us
new solutions.

Infinitesimal (coordinate transformations) spacetime
symmetries belong to type (a) symmetries [13] but the
group structure is difi'erent from the local SL(2,C) be-
cause the commutation relation (11) is replaced by
[6~,8y] =Bz where Z =6~1 —crq.X+ [Y,X]. This yields
the infinite-dimensional difl'eomorphism group.

Type (b): The set (t, co) is a symmetry of the vacuum
Einstein equations where

t. o
2

cr' = cr —cpDA — (cpA +2 cp )
2t

3

(crcpA+ Ascot) —.

2 3
t.'0 Eo

I '=I +EON+ — BN+ 6' N+
3t

where

(8cp) cr =DcpA+ cpDA,

(6 cp)cr =2&pDA+ (DRo+ 3cpcp)A+ cpAcpf .

(is)

(2o)
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[pA pB] (22)

where

L=
—Lp

(23)

Lp —xp Pp+X l0 l+X2 Pp,

Ll Xp Pl+Xi @2+X/ P3

Lp =Xp P2+X l'F3+ x2 P4,

(24)

It is straightforward to calculate each coefficient of eo by
the use of Eqs. (20) and (21) in an algorithmic way. If
the set (o, l ) is a solution of the vacuum equations then
the set (cr', I ') given in (18) and (19) is also a solution of
the same equations. This is like the exponentiation of
generalized symmetries of the KdV equation.

The commutation relations of two type (b) symmetries
give a type (a) symmetry, i.e. ,

use of different types of symmetries. On the other hand,
there is another type of hierarchy which is obtained by
the utility of the same type of symmetry. We shall now

give this hierarchy.
It is also possible to generate infinitely many sym-

metries of the vacuum Einstein equations by the utility of
type (c) symmetries. In the following we use lower-case
letters a, b, c, . . . instead of the letters A, B,C, . . . as the
index of type (c) symmetry generators 6. We shall also
use a subscript 1 to indicate that 6~ is the first element of
a hierarchy. Let (t~, co[) and (tt, cu~ ) be symmetries of
the vacuum equations of the same type where

t ~

=—6~'a = —i (0 'A t —A 0 't ),
0 fo. = RAco~'o =iD(Q'A t),

t"—=a'o = —t (n'B' —Bn'),
A~cr=RBcu~ o=iD. (Q Bt) .

with

Xp a lb 2 a2b 1

x l a lb3 a3b l + a2 b2 —a2b2

x2 =b3a2 —a3b2,

(25)
tab pa&b ghana

ab pa b gb a (30)

Here A and 8 are arbitrary 2X2 matrices. Then it is

easy to show that the new set (tq', co&' ) satisfies the
linearized vacuum equations where

where
r

al
A= a* a3

bl b2

b* b

Denoting t2' =6'2' o and m2' =62 I then we obtain
62 =[6~,'6~]. The new set (tz ",co& ) is explicitly given

by

t2& b=$2a bcT = i[/&bBt —B(/ab) t

The commutation relations in (11), (17), and (22) imply
that type (a) and type (b) symmetries together give a
closed symmetry algebra of the vacuum Einstein equa-
tions in which the local sl(2, C) symmetry algebra is its
maximal subalgebra.

Type (c): The set (t~, co~ ) is a symmetry of the vacu-
um Einstein equations where

t~) = —i[n "A t —A (n ~) t]

co~ cr =iD(A "A t),
(27)

i(~,'/2) [—(Sn')A ' A(en")—']— (2g)

where 6'0" =i 0"[0 A t —A(A") t]+ (Dco )A. This
type of symmetry provides other new symmetries. For in-
stance, the commutator of type (b) and type (c) sym-
metries gives a new symmetry of a diff'erent type. The
commutation relations of this new symmetry with type
(b) and type (c) symmetries give other new symmetries.
This way one obtains an infinite number of symmetries of
vacuum gravitational field equations. This hierarchy of
symmetries, as explained above, is obtained through the

with 0 o. =RA. Here A is a complex 2&2 matrix. One
may exponentiate this symmetry and obtain a formal
solution of the vacuum Einstein equations

o'' =o —&so[A "A t —A (0")t]

~a, b —pa, bI-M2'

—n "A'+A(nb')'] (31)

(32)

+&~1B t I Bf~l t+ (33)

Here 0' a=( Dodec)B i+0 (O'At —AA't). The new
solution (t2', co2' ) is a function of the connection, curva-
ture, and the first, second, and third derivatives of the
curvature. Hence it is diAerent from the first symmetry
solution (t ~, co~'). For this reason we use a subscript 2 to
indicate that it is a new symmetry.

By the application of 6] to the new symmetry we obtain
another one. For instance, the commutator of 6'l and 62
gives ci3 '=[8~', 82']. Although we do not display it
here, the set (t3 ', cii3~') satisfies the linearized vacuum
equations. Hence it is also a new symmetry of the vacu-
um Einstein equations. In this way we generate infinitely

i I I

many symmetries 6„' ' ' ' ' with n = 1,2, 3, . . ..
Here the operator [6&', ] plays the role of recursion
operator in the KdV case. The set (t„,co„) in general de-
pends on the connection, curvature, and the derivatives of
the curvature up to the (n+1)th order. The infinite-
dimensional algebra obtained this way has the following

where co~' is also found through the following equation
[which is in agreement with (30)]:

a, b D(~abBt ~ baA t) ~bA ~at
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commutation relations:

[gab, . . . , cd, ga'b', . . . , c'd', . . . ] ~ah, . . . , a'b', . . . , cd, . . . , c'd',
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