VOLUME 70, NUMBER 23

PHYSICAL REVIEW LETTERS

7 JUNE 1993

Supercurrent Drag via the Coulomb Interaction

Ji-Min Duan and Sungkit Yip
Department of Physics & Astronomy, Northwestern University, Evanston, Illinois 60208
(Received 1 February 1993)

We investigate the supercurrent drag effect due to the Coulomb interaction between two spatially
separated superconductors. The supercurrent for a given wire/layer is shown to depend on the super-
fluid velocity in the other wire/layer. The magnitude of this effect is calculated. This supercurrent

drag effect should be observable in experiments.

PACS numbers: 74.20.-z, 73.20.Dx, 73.50.Bk, 74.90.4+n

The discovery of the high T, superconductors a few
years ago led to a renewed interest in layered supercon-
ductors [1]. The interaction between the superconductiv-
ity which exists on each separate superconducting layer is
of particular concern. For example, it has been empha-
sized that, instead of vortex lines, one should visualize
vortex “pancakes” on each layer [2]. Understanding the
interaction between pancakes on different layers is thus
an important problem. Similarly, there have been numer-
ous discussions, if anyon superconductivity is realized on
each layer, as to how the anyon states on different layers
are correlated with each other (see, e.g., Ref. [3]).

To illustrate the interaction between the layers, we here
consider the special case of a two layer/wire system. We
shall consider uniform superflows in each layer/wire, and
consider how the Coulomb interaction between the lay-
ers/wires is affected due to the superflows. This Coulomb
interaction is via virtual fluctuations into higher eigen-
states, and is in some sense a generalization of the van
der Waals forces. We shall show that this interaction
will lead to a supercurrent appearing on a layer/wire due
to the superfluid velocity on the other layer/wire, even
though there is no tunneling of electrons from one to the
other.

This supercurrent drag effect itself is not new. It has
been discussed for 3He-4He mixture, if both species be-
come superfluid [4], and in neutron stars, where the neu-
trons and the protons are believed to condense into a
superfluid mixture [5]. It is also implicit in the work in
3He(—A), where the supercurrent for the S, = +1 spin
pairs, say, depends on the superfluid velocities of both the
S, = +1 and the S, = —1 pairs [6, 7]. This supercurrent
drag will result whenever there is an appropriate Fermi
liquid interaction between the two species. We believe,
however, this is the first time that it has been discussed
for two spatially separated electronic superconductors.
This current is different from that produced by magnetic
induction. We shall evaluate this current, and we believe
that this current can be measured in a realistic experi-
ment.

We first consider two identical, infinitely long super-
conducting wires separated by a distance D at zero tem-
perature. For simplicity we assume that the radius of
the wires a is smaller than both the coherence length &
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and the penetration depth, so that variations along the
radial directions within the wires can be ignored. It is
easy to derive the plasma mode(s) spectrum by writing
down the equations for the conservation of charge and
the equations of motion for the superfluids [8-10], anal-
ogous to what was done in the normal state [11]. The
dispersions in the presence of superfluid velocities v; and
v2 on the wires 1 and 2, respectively, are determined by
the determinantal equation

(w — qu1)? — s%¢? -X _
“x (W — qug)? — s%¢?| = 0, (1)

where s is the plasma mode velocity of each wire if there
were neither superflow nor interwire Coulomb interac-
tion, s = s2 + 4mnge?Ko(0)/m. Here sq is related to
the compressibility of the electrons without the intrawire
Coulomb interaction, and is given by vp/v/3 (vr) if the
wire is thick (thin) compared with the inverse of Fermi
wave vector, and ng the electron density per unit length
of the wire. The logarithmic divergence of the Bessel
function Ky at zero argument is to be cut off due to the
finite thickness of the wire. We shall not indicate this
cutoff explicitly here. X = 4nnge2q?Ko(|gD|)/m is from
the Coulomb interaction between the wires.

Equation (1) determines the dispersion of two (%)
plasma modes, corresponding to whether the charge den-
sities of the two wires oscillate in or out of phase. The
frequency of these modes is affected by the superfluid ve-
locities. The zero point energy of the system, given by
PR 1[Aw4(q) + hw_(q)], is thus a function of the veloci-
ties. We find, apart from a constant (independent of the
velocities) in which we shall not be interested, per unit
length

AE13 = —ko(v1 — v2)?, (2)

where o = +hAne?/16mm?2s5D2. Equation (2) is correct
to the lowest (second) order in the interaction between
the wires (i.e., to order X2). The sign of Eq. (2) is due
to the fact that the relative velocity lowers the out-of-
phase mode frequency (w-) more than it raises the in-
phase mode (w4 ). The dependence of ¢ on the distance
D follows from the fact that the frequencies for both
modes are linear in g and thus the sum over ¢ involves
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[ dqlq|[Ko(gD)]? x 1/D? [12]. the current on the second wire

The above calculation can be generalized to finite but I = €
small temperatures, where the relevant quantity is the 2 = —(p22v2 + p21v1), (4)

free energy of the system, evaluated by considering the
thermal occupations of the plasma modes. We find that
this finite temperature correction to the free energy de-
creases the effective coupling coefficient k¢ in equation
(2), as well as renormalizing the superfluid densities of
each wire. To lowest order the fractional correction to kg
is of order [kgT/(hs/D))? as expected since s/D is the
characteristic plasma frequency which would be affected
by the presence of the relative velocities. This tempera-
ture correction is typically small [13].

In the above we have computed the free energy of the
system by simply considering the “vacuum fluctuations”
or the thermal occupation of the plasmon modes. Alter-
natively one can consider the change in the free energy via
perturbation theory in the interaction between the wires.
In second order perturbation the interaction energy can
be expressed in terms of the density-density correlation
functions for each wire, which we have obtained in the
random phase approximation. The results are identical
to those presented above. The sign of Eq. (2) [and (3)
below] is in accordance with a general result derived by
Rojo and Leggett [3], that, within second order perturba-
tion theory, the two wires/layers have a lower interaction
energy if they are in the time-reversed state (vi = —vg)
than if they are in the same state (vy = vy). Here the
superflow explicitly breaks parity and thus allows a bulk
rather than an edge effect [3].

A similar calculation can be carried out for two 2d
layers separated by a distance D. The analysis is much
more involved because, instead of two linear modes in
1d, the two modes now acquire qualitatively different dis-
persions, with w_ o« g and wy o ¢'/2, respectively, in the
the long-wavelength limit . This is due to the appearance
of a new length scale, g7 for the Thomas-Fermi screen-
ing in the spectrum. We find that, for a wide range of
reasonable parameters, the interaction energy per unit
area is, at zero temperature, well approximated by

AED = —kg(v1 —v2)?, (3)

where k§ ~ 1/48m+/2vpD3. We shall refer the read-
ers to Ref. [10] for the details in obtaining this result.
Equations (2) and (3) indicate that the force between
the wires/layers is affected by the presence of superfluid
velocities (and hence current). We shall study this force
elsewhere, and in this paper concentrate on the super-
current drag effect.

To understand the physical significance of the velocity
dependence of this interaction energy, we recall that the
superfluid velocity is (AVx —2eA /c)/2m , where Y is the
phase of the order parameter, and that the supercurrent
(at point r) is related to the derivative of the free energy
with respect to the vector potential A (at point r). Using
F = py(v}+v3)/2— Kko(v1 —v2)?, we obtain, for example,
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where p2s = ps — 2K, p21 = 2kp. Thus the supercurrent
of the second wire depends on the superfluid velocity on
itself as well as that of the first wire. As in previous
literature [4, 5], we shall call this the “supercurrent drag.”

To make the physics more transparent we first ignore
the coupling to the vector potential, i.e., simply assume
vg = AVx2/2m, etc. Now consider the current in the
second wire, with initially I = 0 (v = 0), and with the
current of the first wire (and hence v;) slowly increasing
from zero (or consider bringing in the first wire with a
current from infinity to the second wire). If vy remains
zero, i.e., there is no change in the phase gradient, then a
current in this wire will start to flow. Notice that the sec-
ond wire is no longer at its minimum free energy state. In
the minimum free energy state, ve (Vx2) must achieve
the value so that 0F/0vy = 0 [0F/9(Vx2) = 0], and
hence by definition I, = 0. Superconductivity is essential
in the above argument, so that the wire can be trapped in
a metastable state. The energy barrier associated with
the superconductivity prevents (apart from phase slips
by thermal/quantum fluctuations) ve from acquiring a
finite value so as to achieve Iy = 0. For a drag current
much smaller than the (mean field) critical current, this
barrier height AF is of the order of F,ma?¢ where F,
is the condensation energy density. For a superconduct-
ing wire with £ ~ 500 A and a ~ 100 A, this barrier is
~ 102kpT, except near T.. The rate of thermal phase
slips, given by Qe~2F/k8T where € is a prefactor es-
timated by McCumber and Halperin [14], is found to
be negligible except very near T.. The rate of quan-
tum phase slips can be estimated by replacing kg7 in
the above expression by A/7 where 7 is of the order of
~ h/kpgT, [15]. We find that this rate is negligible in
laboratory time scales as well.

In a recent paper, Rojo and Mahan [16] considered the
Coulomb interaction between two wires in the normal
state, and obtained an expression similar to Eq. (2) for
the interaction energy, with v; 2 replaced by 6k o/m,
where 6k, 2 are the shifts in the occupation numbers, i.e.,
the “momentum states” are occupied for —kr + 6k1 2 <
k < kp + 6ky 2 for wires 1 and 2, respectively. They
have calculated, for T = 0, the current in wire 2 for
the state 6ke = 0, and show that it is finite if 6k; #
0. However, as argued above, we do not think that in
equilibrium I, can be nonzero. Imperfections of the wire
or coupling to the environment will in general lead to
rearrangement in quasiparticle occupations in k space
(scattering), eventually with 8F/8k; = 0 so that the
current I is identically zero.

We also note that if wire 2 is a superconductor but
an open circuit, no current or voltage should develop.
This is because the superconductor does not have to go
through any energy barrier to develop a phase gradient
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(and hence v2) so that I = 0. This should be contrasted
with the current drag by scattering (a dissipative process)
which is operative at finite temperature for normal wires
[17].

In the rest of this paper we shall discuss the feasibility
of detecting this drag current experimentally. We shall
consider the configuration of Fig. 1, with two identical
loops, length A, width D; separated by a distance D, and
A > D ~ D;. (This is chosen in order to have a current
which has a significant contribution from the Coulomb
drag yet not dominated by the magnetic induction, see
below.) We assume that wire 1 carries a finite total phase
winding around the wire, whereas wire 2 does not. We
shall find the current I flowing in wire 2. Notice that
I in general is finite, but I will be zero if there were
no (magnetic or Coulomb) interaction between the wires.
We shall simply consider T" = 0, where the Coulomb drag
effect is most significant.

For this purpose we first notice that since the electrons
are charged, the superfluid velocities are related not only
to the phase gradient but also to the vector potential
A. For a given experimental arrangement the current
should be determined by solving the Maxwell equation
V x (V x A) = 4nJ/c self-consistently together with
the constitutive equations [Eq. (4)]. This in general is a
complicated mathematical problem. To gain more phys-
ical insight, we shall first take a few (somewhat drastic)
approximations and confine ourselves to orders of mag-
nitude. We anticipate that the current I will be much
smaller than I;. Therefore the vector potential for any
point on the loop 2 is roughly given by that generated by
loop 1. Since this vector potential A is nonuniform over
loop 2, a nonuniform phase gradient (Vyxs) will develop
so that the current is a constant along the loop, and with
the constraint that fw Vxz-dla = 0 (assuming that there
are no phase slips). For an estimate of vz in (4), we shall
thus take the average of —eA/mc projected along the
wire (more precisely, along the direction indicated by the
arrows in Fig. 1) as generated by the first wire [18]:

- e I1 (D+D1)2
2N e e [lnD(D+ 2Dy | (%)

This, when substituted in the first term of Eq. (4), gives

I Iz
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FIG. 1. A setup examined in the text.

the contribution to the current on wire 2 due to magnetic
induction. The effect in which we shall be interested is
contained in the second term of Eq. (4). For an estimate
of this term, we notice that the Coulomb drag effect on
different arms of the loop is trying to reinforce/cancel
each other. We shall simply take an effective coupling,
Keff, to be the average of contributions on the different
arms of loop 2 as calculated in (2):
1 hnde* [1 2 1
Reff ~ 5 16mm2s® [ﬁ CETAERCIE: D)2] ‘
(6)
The current on wire 1 is given by an expression that is
similar to (4) with indices 1, 2 interchanged. Anticipating
that the Coulomb and magnetic interaction with wire 2
will only give a small correction to the physical quantities
on this wire 1 we approximate v; by the original (non-
interacting) value, and shall simply take I; = ngev; [18].
We can now find the ratio of the magnitude of the current
produced by the “Coulomb drag” to that generated by
the magnetic induction (approximated by psvz). This
ratio is approximately given by

. g/j 1 1 1
~ 3o krap (kFD)2 (vr/c)?

9x(D1/D)
gina(D1/D)’

(M
where the dimensionless functions g, and g;,q4 are related
to the geometric factors for the Coulomb and magnetic
induction, respectively, gx(z) = [1 —2/(1 + )% +1/(1 +
2x)?], gina(z) = In[(1 +2)2/(1 +2z)]. ap = h/me? is the
Bohr radius. In obtaining (7) we have assumed that each
wire has a radius > k;l, and have approximated the
plasma velocity s by so = vr/v/3. Because of the small-
ness of vr/c, though for reasonable distances krpD > 1,
the ratio r can still be of order (or even larger than) 1
(choosing z ~ 1), and thus the current produced by the
Coulomb interaction is comparable to that induced by
the magnetic (Biot-Savart) interaction. Notice also that
since pog, p21 > 0 in Eq. (4), we see from (5) and (6) that
the Coulomb drag current and the induction current are
opposite to each other.

We shall now estimate I§, the part of the current pro-
duced by the Coulomb drag effect. With the same ap-
proximations as outlined above in obtaining (7), we find

33/2 a2
IR s e pads
1672 (krpag)?D

(D1/D)I1 (8)

In obtaining Eq. (8) we have assumed that the current
is uniform over the cross section of the wire. If we take
a ~ 100 A and D; ~ D ~ 1000 A, then I5§ ~ 10~3I;. In
this regard we also note that this order of magnitude for
I% should not be altered if wire 1 (but not wire 2) is in
the normal state [19]. Thus the supercurrent produced
by the Coulomb drag may readily be observable.

We have calculated the current rigorously in the con-
figuration of Fig. 1 (assuming A — oo and x/p; < 1)
and verified that the above features are essentially cor-
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rect, with some minor corrections: (i) the induction
current involves the product of vy above with not the
original superfluid density p, but a quantity reduced by
the Coulomb drag; (ii) because the problem has to be
solved self-consistently, the two effects strictly speak-
ing do not simply add; and therefore (iii) the overall
magnitudes of both the induction/drag currents are cor-
rected by terms that correspond to self- and mutual-
drag/induction. These corrections are of order x/ps,
(€2ps/m?c?)In(D?/a?), or (e2p,/m2c?)gina(D1/D) rela-
tive to the ones presented above. Here g, is a reduced su-
perfluid density [cf. (i)]. If both x/p, and (e?ps/m2c?) ~
(a?/22) are small numbers (here Ar, is the London pene-
tration depth of the corresponding bulk superconductor),
the above estimates will be essentially unchanged.

A similar design may also be possible for the “two-
dimensional” case, with the “wires” in Fig. 1 replaced by
“sheets” (of thickness d) extending out of the plane of
the paper. The ratio r is given by an expression similiar
to Eq. (7) (up to some numerical factors), with gZ(z) =
1-2/(1+ )%+ 1/(1 + 2z)3, and with the quantity in
the square brackets replaced by 1/(kpd)(vr/c)?(krD)3.
Because of the much more rapid decrease of the Coulomb
drag effect with the distance D, achieving r > 1 [in the
modified Eq. (7)] may not be so simple.

It is also interesting to estimate p;o for the oxide lay-
ered superconductors. Typically we find p12/p1; ~ 1072
for neighboring planes. This, however, may be a signifi-
cant correction in physical situations where the velocities
in the neighboring planes differ significantly.

In summary we have considered the Coulomb supercur-
rent drag effect. This effect is distinct from, and possibly
more important than, the magnetic induction effect, and
can be observed experimentally.
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