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Electron-Electron Interactions and Spontaneous Spin Polarization in Quantum Hall Edge States
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We study the efrect» of electron-electron interactions on the ground state of integral quantum Hall
edgestates in the Hartree-Pock approximation. We find that, in the absence of Zeeman splitting, the
outertnost edge state undergoes;& spontaneous transition between spin-unpolarized and spin-polarized
ground states;lt a sample-dependent critical v;ilue of the bulk tilling vb ik 4. The abrupt appearance, in
the spin-pol. irized st,ite, of,i siz, ible (,ibout, i magnetic length) separation between edge states of oppo-
site spin should m;ike the transition accessible to a range of magnetotransport experiments.

PACS number»: 73.20.Dx, 7 l.2N. +d

Edge states in the integral [1-3] and fractional [2-5]
qu;intum Hall regimes have been the subject of intense
study in the past few years because of their importance to
niagnetotransport in a broad r;inge of mesoscopic and
m;icroscopic systems. Wh i le most theoret ical studies
h;ive developed a noninteracting picture of edge states,
;ittention has recently shifted to the eA'ects of electron-
electron interactions on edge-state properties [3-6].
I. lectron spin has played little role in theories of edge
st;ites, which have considered two limits: the integer re-
gime, where the two spin states are taken to be degen-
erate, and the fractional regime, where the system is gen-
er;illy taken to be fully spin polarized [7].

In this Letter, we use the Hartree-Fock approximation
to study the efrects of electron-electron interactions on
the ground state of qu;intum Hall edge states in the in-

teger regime. We show that, in the absence of Zeeman
splitting, the outermost edge state undergoes a spontane-
ous transition between spin-unpolarized and spin-polar-
ized ground states at a sample-dependent critical value
vb'„ik of the bulk Landau level filling. We find that vb„ik is

;ibout 4 for a typical sample, and is a slowly varying func-
tion of sample parameters. The spin-polarized ground
st;ite has a spatial separation between edge states of op-
posite spin that is on the order of the magnetic length and
is only weakly dependent on the Zeeman energy. The
.ibrupt appearance of this large separation should make
the t r;I n sit ion observable i n experiments that measu re
inter-edge-state equilibration, A ha ronov- Boh m osci 1 1 a-
tions in quantum dots, or quantized conductance through
point contacts.

We begin by considering a wide quantum wire along
the p axis in strict two dimensions with a uniform mag-
netic field B in the = direction. Taking A =Bxy, we
write the Hartree-Fock single-particle wave functions as
tij„,i(x,y) =exp( —iXy/l-)p„x(x), where I =(Ac/e8( I is

the m;ignetic length and ltd„x(x) is an eigenfunction of' the
H;imiltonian /t' =Ho+ V, . (x)+ VH (x) + /tt„.„+cruz with

eigenv;ilue r.„(X). Here

leap

= [p,=+ h I (x —X) '-]/2m,

V, . (x) is the bare confining potential that defines the
wire, ;ind Vtt(x) is the Hartree potential

2

Vtt (x) = —2 t dg'n(g')ln ——g'
el ~

where n(x/I) =I'g„xv„(X)~p„x(x) ~

'- is the (sc;tied)
two-dimension;il electron density, and v„(X) is the X-
dependent filling factor for each Landau level and spin
st;ite. Sell'-consistency requires that v„(X)=f(c„(X)),
where f (r) is th'e Fermi function. The spin-dependent
terms in the Hamiltonian are the exchange operator 5'„.„
;ind the Zeeman splitting (with ez =

2 gitttB), which both
conserve L.

We want to focus on an edge region and, if possible,
formulate the Hartree-Fock approximation in a way that
depends only weakly on details external to this edge. To
this end, we decompose the charge density into a uniform
sl.ib ol density vh„ik/2tr and dipolar distributions of
charge concentrated near the edges of the slab: n =n, );b
+An +hn, with

2

Vtt(x) = —2 ~
d('An "(g')ln ——g'

Vbulk e x xR X -xR
ln

1
(2)

th, it is independent of An (() and can'vary rapidly near
The separation of V~ and the spatial dependence of

VII,ind V& are shown schematically in Fig. 1. We now

lump VII with V, into an efTective confining potential
V,".

" = V, . + VH, which is nearly independent of local rear
ranger»ents of charge near xtt, if the wire is wide and the
density near the center is uniform. Our approach is to
;ipply the Hartree-Fock approximation treating V,".

'
as a

truly fixed confining potential and V~ as the effective

tt, i,,h(&) = (vh ik/2tr)6(g —x /I)6(x /I —&) .

Here B(() is the unit step function, and we use the
definitions xtt = (2tr/vh„ik)l Jp d& n(g), An" (&)—=6(&)

&& [/1 (g) —n, &(ig)] for the right-hand edge and equivalent
definitions for the left-hand edge. We can now divide V~
into;i part Vtt th;it depends on An'(() and is smoothly
varying near x~, and a part
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dg

—
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V elT(l~ ) (4)

&//(X &X) =/r ' -
I dge ~ ' V (lg;Ax), (s)

~ [x+ (]/2) ~~xl/I
c;.„(X;~X)=- dge ~ fCp(g )
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FIG. 1. Potential and density profiles for a wide quantum
wire. The bare confining potential V, and the total self-
consistent potential V, + VH are shown as solid lines, and the
electron density as a dashed line. The blowup of the region
near xg shows the separation of the self-consistent potential
into VH and the eA'ective confining potential V, + VH.

~(X;~X)=~'(X)+c (X;~X)+c„;(X;~X)+~c,-,
where

~n"(g;~X) =gn, g+ ~X ——e( —g),
21

(3)

Hartree potential.
To illustrate this, we solve the case vt, „~k=2 explicitly

in the strong field limit, where we can ignore mixing be-
tween Landau levels. We shift the origin to xR for nota-
tional simplicity and consider a spin-polarized trial state
with integral Landau level fillings: vp (X;Ax) =6( —X
—ohx/2). The single-particle energies corresponding to
the trial solution depend on spin and on the width param-
eter hL:

Here c,.„(X;0) is the single-particle exchange energy for
vp =6( —X) filling [defined so that c„„(0;0)=0], ni(s)
= [I —Erf(() ]/4/r is the density for the same filling
[where Erf(z) is the error function], and Kp(z) is the
modified Bessel function.

We want to know under what circumstances a trial
state of this form can be a fully self-consistent solution of
the Hartree-Fock equations. It is easy to see that for
very hard confining potentials eITects of the confining po-
tential will dominate electron-electron interactions near
the edge and our integer filling trial state (with AX=0
for cz =0) will satisfy the Hartree-Fock equations. As
the confining potential is softened, the ground state con-
tinues to have integer filling of the form vp (X;Ax) until

eventually, for very soft potential, it gives way to a solu-
tion with fractional filling. We shall focus on the regime
where integer filling obtains, and study the behavior
of the value h.X that renders the trial solution
self-consistent in this regime. We emphasize that the
integer-filling states we find are true self-consistent solu-
tions of the H art ree- Fock equations, representi ng true lo-
cal minima in the full space of Hartree-Fock wave func-
tions, and are not merely variational solutions in the re-
stricted subspace of states with integer filling.

Within the integer-filling regime we find AL* by
minimizing the energy

E(~X) =g vp(XgiX) [g(X;~X)—
—,
' [cH(X;~X)+c„„(X;~X)]],

then checking for self-consistency by calculating cp(x;dx) explicitly [8]. In our case the energy can be written in the
simple form

l
fO

E(AX) =E(0)+ ' —czAX+
i2 - Jo

ZX/2
dX[c;. (X) —c,' ( —X)+c (2X;0)] '. (7)

3

E(AX) = E(0)+ &
—czdx+ (a a )Ax +-

2m/ I 4 |1 4l

an expansion in powers of AX—=AX/l. In this expansion
a =all/(e /el) is the (scaled) slope of c,', a, =——lcH(0;
0)/(e /el) =0.404, P=l cH'(0;0)/(e /el) =0.318, and
a3 4 l a3/(e /el ) (a prime indicates derivative with
respect to X). Equation (8) has the form of Landau free
energy for a second-order phase transition, with AL as
the order parameter and ez as the external field. With ez

2

(a, +P)AX'+
t. l

set to zero, we see that there is a spontaneous spin-

polarizing transition when a is reduced below e, . The ex-
act numerical solution of (7) for cz =0 and czaO (solid
lines) is shown in Fig. 2 for the case c,' =a~x and com-
pared with the approximate result AX*/l = [(3/P) ~

a
—a, ~]

' e(a, —a) (dashed line), found by truncating

The value hL* that minimizes the energy can be found numerically for a given V,', which need not be smoothly vary-
ing. Alternatively, we-can gain insight by expanding c,". (X) =alx+a2X + [taking c,' (0) =0] and writing
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FIG. 2. Equilibrium separation AX* of edge states of oppo-
site spin as a function of slope parameter a=all/(e /el), with

and without the Zeeman energy appropriate for GaAs at B =2
T (solid lines). The dashed line shows Landau theory approxi-
mation. Inset: Self-consistent single-particle energies sg(X;
AX* ) for a =0.2 & a, (solid lines); Fermi level (dashed line).

the series (8) after AX . For this e,', our trial solution
fails (and fractional filling appears) for tr & a/ = —0.76.
Note that aI, unlike e„depends on the form of c,' .

It is perhaps surprising that although F(AX) in Eq.
(7) has been calculated within the Hartree-Fock approxi-
mation, it does not depend on the exchange energy. As a
consequence, the energy-minimizing separation AL* be-
tween edge states of opposite spin is determined by direct
rather than exchange interactions. The explanation for
this is twofold. First, the instability at e, is itself due to
direct interactions. Indeed, the unpolarized v =2 0
solution becomes unstable at the same e, even in the
Hartree approximation, but gives way to a state with
fractional filling, rather than to one with a spin polariza-
tion. The role of exchange in the Hartree-Fock analysis
is to stabilize the spin-polarized integer-filling state rela-
tive to states with fractional filling [because exchange
favors completely filled or completely empty (spin-split)
Landau levels]. Second, since the total exchange energy
is the same for any solution with integral filling, exchange
does not affect the value of AL* in the integer-filling re-
gime.

In Figs. 3(;t)-3(d) we use the total filling factor
v(X) =P„v„(X) to summ. trize schematically the evolu-
tion of the edge states as the parameter a is reduced. For
a & a, we have the situation in Fig. 3(a), where the edge
i» unpol;trized (taking rz =0). As a is reduced below a, . ,
the electron system undergoes a second-order transition
to the spin-polarized state shown in Fig. 3(b). As a is re-
duced still further, the ground state acquires regions with
fr;tctional filling, as shown in Fig. 3(c). In the limit of
very soft potential, the Landau level filling is fractional
and the screening is metallic everywhere, except for an
incompressible region at v= l due to the exchange energy
g,&p [3]. When corrections to Hartree-Fock are included,
the filling will no longer be strictly integral even for very
h, trd confining potentials, but a Fermi surface (i.e. , a

FIG. 3. Evolution of v(X) near the edge as the effective
confining potential is softened. (a) Unpolarized ground state
for steep confining potential (a & a,). (b) Spontaneously polar-
ized integral-filling state for a & a, . (c) Possible ground state
with regions of fractional filling. (d) Ground state with frac-
tional filling in the electrostatic regime, with a spin-polarized
incompressible region separating wide compressible regions that
have states of opposite spin at the Fermi level. Shading indi-

cates net spin polarization.

discontinuity in filling) will still exist for e;tch spin state
[6], .tnd the limiting c;tses of an unpolarized ground state
f'or hard-wall confinement and a polarized ground state
for soft confinement will still obtain. Hence the sym-
n1etry-breaking transition from a ground state where the
Fermi surface positions for the two spin states coincide to
one where they are split should remain.

We can make contact with a realistic system and bring
out the physics of' the spin-polarizing transition by consid-
ering the electrostatic model introduced by Gelfand and
Halperin [5] for edges in mesa-etched samples. In such a
s;in1ple, negative surface charge at the mesa wall depletes
the semi-infinite electron gas to a distance d from the sur-
face„which typically is large compared to the interelec-
tron»p;tcing, rp=(xnp) '/'-, where np is the bulk electron
density. lf the surface charge is modeled by a line charge
X lying in the plane of the electron gas, and if the spacing
between the electron gas and the positive donor layer is

neglected, then k = —2en0d and the classical electrostatic
density profile is given by [5]

».,(~) =np — +I'n I-~/dl '- e( —x), (9)
2 ix/d i

I + i.x/di

where the surface charge lies at .x =d. To apply our ear-
lier an;ilysis to the outermost edge state in this case, we
fix the electronic charge in the higher Landau levels at its
classical density, and allow the two spin states in the
lowest Landau level to minimize their energy, as dis-
cussed above. The appropriate effective confining poten-
tial V,".

'"
is determined by the depletion width d and bulk

filling vi, „ik. The Hartree-Fock ground state is then deter-
n1ined by the two dimensionless parameters v~„ik and
d=d/rp. For given d, there is a critical bulk filling

vq„lk(d) ( & 2) such that I'or vh„lk & vh„ik the lowest Lan-
dau level is spin unpolarized, while for vt, „ik ( vb„ik it is
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FIG. 4. Solid line shows the critical value of bulk filling fac-
tor v[;„ik as a function of d/ra, where d is the depletion width

and ro is the interparticle spacing; the dashed line shows the
value of vb, ~k where ~=I. Inset: Comparison of classical elec-
trostatic electron density (solid line) to the density given by our
approximation (dashed line), with parameters vb„ik =3.2 and

d/ra =25.

spin polarized, with hL* on the order of the magnetic
length (see Fig. 4).

Within this model the spin-polarizing transition may be
understood as I'ollows. In the electrostatic solution (9),
the density gradient ~dn/dx~ is large near the edge,
diverging as x 0, but becomes small when one is fur-
ther from the edge. If vb„~k is large, the region with
0& 2tr/ n„,(x) & 2. is a narrow strip close to the edge,
where the density profile is steep. The quantum solution
can best approximate this by choosing an abrupt drop in

v(X) from 2 to 0, as in Fig. 3(a), with no polarization in

the outermost edge state. If vb„~k is only slightly greater
than 2, however, and if d &) I, then the region with
0 & 2tr/ n„,(x) & 2 is w.ide on the scale of I, and the
quantum solution mimics the more gradual density profile
by developing a spin-polarized ground state, as in Fig.
3(b), 3(c), or 3(d). Note that without exchange, the
quantum solution would achieve a gradual density profile
through fractional filling. In situations with vb„~k ~ 4,
when the outermost edge state is typically unpolarized,
there might nevertheless occur a spontaneous polarization
of edge states corresponding to higher Landau levels, as
these occur deeper in the sample, where the electrostatic
density gradient is smaller.

Since a large spatial separation between edge states of
opposite spin appears abruptly when the lowest Landau
level becomes spin polarized, and since vb„~k can be varied
by changing 8, the transition should be detectable in
several experiments. In measurements of equilibration
between opposite spin states in the outermost edge chan-
nel [9], for example, the abrupt increase in separation
should strongly reduce the scattering rate and increase

the equilibration length. In measurements of Aharonov-
Bohm (AB) oscillations in conductance, both in quantum
dots [10] and in single point contacts [11], the spatial
separation between diferent spin states will lead to
ditTerent AB frequencies and to beats in the AB oscilla-
tions as a function of magnetic field. In point contacts
[2, 12], the separation should lead to spin-split conduc-
tance steps that depend on the perpendicular and not the
in-plane component of B. Of general relevance also are
experiments on nonlinear tunneling across incompressible
spin-polarized v=1 regions in the bulk [13].

In conclusion, we have shown that within the Hartree-
Fock approximation the outermost edge state undergoes a
spontaneous transition to a spin-polarized ground state at
a critical bulk filling factor. The transition leads to a sep-
aration between edge channels of opposite spin on the or-
der of the magnetic length that should be observable in a
variety of magnetotransport experiments.
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