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Maximum Entropy Approach for Linear Scaling in the Electronic Structure Problem
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We present a method for obtaining the band-structure energy and density of states for large,
sparse Hamiltonian matrices as occur in electronic structure problems. The computation scales
linearly with the dimension of the matrix. We use a statistical approach using random vectors along
with the principle of maximum entropy to obtain highly accurate estimates for integrals over the
density of states. We offer several tests of the approach using tight-binding Hamiltonians and apply
the scheme to large icosahedral fullerenes with 720 and 2160 atoms.

PACS numbers: 71.10.+x, 71.25.—s

One of the current principal thrusts of solid state the-
ory is to compute the energetics of very large systems
using reliable electronic structure based methods. The
importance of the problem is obvious: reliable electronic
structure calculations for large () 500 atom) systems
are the key to understanding crucial aspects of biolog-
ical molecules such as DNA, and the proper modeling
of systems like amorphous materials and glasses, liquids,
and surfaces. Electronic structure calculations in all of
these areas are either currently impossible or plagued by
finite size effects, which can be severe.

The ultimate bottleneck in these calculations is either
the exact diagonalization of a local orbital matrix [1],
which scales as Ns (for N the dimension of the matrix),
or the orthonormalization step in plane-wave [2,3] meth-
ods which also scales as N . In this Letter we ofFer a new
statistical approach which scales linearly with N and esti-
mates the entire eigenvalue spectrum. We anticipate that
this statistical scheme will also be useful in plane-wave
calculations, where only a small part of the spectrum is
wanted.

There have recently been several "order N" [O(N)]
methods proposed in the literature [4—7], all of which
depend upon some assumption of electronic localization.
Our proposal is very difFerent from these. We adopt a sta-
tistical approach, an idea similar to importance sampling
and the maximum entropy principle [8] to efficiently ob-
tain incomplete (but sufficient) information to compute
the total density of states (DOS), band-structure energy
(BSE) integrals, and related quantities.

Let H be a large, sparse, Hermitian matrix of dimen-
sion N. Ideally one would like the eigenvalue spectrum
e, , where Hi/i, = e,Q, . In this work, we seek the DOS
p(E) and particularly the BSE obtained by integrating
E x p(E) up to the Fermi level. We note that all the
information carried by the density of states is contained
in any one single vector ( in the family of vectors of the
form

where Pi specifies an arbitrary phase. Note that the ex-
pectation value of the DOS operator p(E) = b(E —H)
between any g gives the exact density of states; p(E) =
((~p(E) ~(). The vectors ( equally weigh all of the eigen-
values of the spectrum of H. For this reason we call such

( impartial vectors. The Hamiltonian H has moments

Pn)

dEE"p(E) = —TrH",

and an impartial vector also generates exact moments
through its expectation value,

However, as we discuss below, the expectation value is
an O(N) operation, while taking the trace in Eq. (2) is
not.

In our method, there are two key steps. The first step
is to effectively approximate g in some manner. We do
this by selecting appropriate random vectors x, and use
a penalty function method to find an improved vector 2:*

closer to an impartial vector. The second step involves
transforming the information contained in ( into p(E) in
an O(N) way. We accomplish this by viewing p(E) as
a probability distribution and use the maximum entropy
principle (Maxent) to determine the best estimate from
partial information (a finite set of moments). The price
we pay for this increased eKciency is that we do not
compute the exact values of individual eigenvalues, but
rather obtain an accurate, continuous representation of
the electronic DOS.

Skilling [9] was the first to note the possibility of ex-
tracting moment data from the operation of sparse ma-
trices on random vectors. Silver, Roder, and Bruggeman
[10] used random vectors to generate moment data and
used an orthogonal polynomial fit for the DOS of the
2D 4x4 Heisenberg model. Here we greatly extend the
practical value of this earlier work and investigate its ap-
propriateness for electronic structure applications.

The first step of our technique is to approximate g. I et
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x be an arbitrary random normalized vector in the space
of H. Define the inner product (xly) = Q, z, *y, . Now
consider the following sequence vA. , where

vg = (zlH" lz). (4)

These objects are clearly the moments of a non-negative
function p (E) for any x as can be seen by inspecting
Eq. (4) with x written in the eigenvector representation.
Since l(Q~l()l is uniformly distributed, the average of
p~{E), (p~(E)), over all random vectors x will reproduce
p(E). Similarly averaging Eq. (4) over random vectors
x will reproduce the exact moments p„[Eq. (2)]. The
v& are easily computed, as observed by Skilling [9] and
Silver, Roder, and Bruggeman [10] for sparse H since vA,

may be computed recursively. If we define yk = H"x,
then yg+q = Hyy, and vA, = (zlyA, ). Thus, we may accu-
mulate the v~ by repeated operations of a sparse matrix
on a vector. These calculations are O{N).

A unique feature of our work is to use importance sam-
pling in the process of accumulating moment data (vg)
from H. As shown below, this dramatically improves the
method for practical use. To implement this, we con-
struct a penalty function of a vector z, subjecting it to
three constraints (po, p, q, and p2),

P(z) = ((*lz) —po)'+ ((*lHI*) —~i)'
+((*lHH lz) —») (5)

The exact moments pq and pz are both O(N) calculable,
and by normalization, p0 ——1. We minimize the function
[Eq. (5)] with a conjugate gradient (CG) method [11].
We find that it is straightforward to generate x* such
that P(z*) = 0 from an initial random vector x. Note
that such z" is "closer" to an impartial vector ( than
an x merely chosen at random and normalized [9,10].
In practice, we select the initial components of x, inde-
pendently from the normal distribution. The larger the
matrix, the fewer CG steps and the fewer the number of
x' vectors are required to obtain converged averages of
the moments. It is of interest that this is true despite a
well known tendency of CG to require more steps for a
larger problem.

The second key step in our technique is to transform
the information contained in x' into p(E) through mo-
ment data [Eq. (4)]. As demonstrated by a variety of
workers [12—15], Maxent offers a very rapidly convergent
approach to computing the density of states from its mo-
ments. Because of its information theoretic origin [8],
Maxent introduces no artifacts stemming from ad hoc
approximations. For numerical convenience, we scaled
and shifted H so that the DOS has support only on

(—l, l), and we used Tchebychev polynomials, T„, in-
stead of r@w powers. It is these shifted and scaled units
that are used in the figures of this paper. In practice, one
can use low-order Maxent approximations to the DOS
to obtain an approximate support, and modify H ac-
cordingly. Thus, no highly accurate guess is required
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2N F (*)
EBs(x) =

N, p (E)EdE.

Here N, is the total number of electrons in the supercell
and N is the total number of orbitals, and the factor of
2 reHects spin degeneracy.

By sampling 1000 RV s, we obtain a probability distri-
bution D(EBs) which gives the likelihood that a single
RV will give the value EBS as its BSE. This is shown
in Fig. 1. The width of D(EBs) decreases dramatically
as more constraints are added. The full width at half
maximum cr is empirically seen to be os = (1/2 )o.2 =
(1/2s)o'q where the subscript indicates the number of
constraints (p, , ) used to construct the random vector x.
The benefit of importance sampling is thus seen to be
quite large.

a priori for the support. Given a set of moment data
(vi, (z*)) from a given random vector z*, the Maxent re-
construction is pM (E, x') = exp [Q A„(z*)T„(E)], where
the Lagrange multipliers A„(z') are determined by re-
quiring that the Maxent DOS reproduce the input mo-
ments (vg(z*) }.See Turek [14] for a stable algorithm to
solve the Maxent moment problem. After having gener-
ated a Maxent reconstruction of the DOS for a specific
set of moments (vA, (z*)) for a given random vector, we
average over such reconstructions for diferent vectors x*
to obtain (p ~ (E)), our statistical approximation to the
true DOS p(E).

In the rest of this paper we give examples to demon-
strate the method using a tight-binding model. The total
energy is EToT ——EBS+ESR, where EBS is the BSEgiven
by a sum over occupied orbitals, and ESR is a "short-
ranged" repulsive two body potential which we do not
concern ourselves with here.

We first consider perfect bulk GaAs in the 64 atom
supercell using the model of Ref. [16]. This (320 x 320)
matrix is very small for this method, but is easily exactly
diagonalized for comparisons.

We will focus primarily on the BSE. There are three
issues which relate to the convergence of the BSE.These
issues are (i) the constraints incorporated through the
penalty function on each random vector (importance
sampling), (ii) the number NRv of random vectors (RV)
used, and (iii) the number of moments extracted from
each vector which is then used in the Maxent DOS re-
construction.

We first demonstrate the eKect of the constraints im-
posed on the random vectors [issue (i)] on the distribu-
tion of BSE we obtain. We choose NRV=1000 and use
30 moments in the Maxent reconstruction. For each ran-
dom vector z, a density of states p (E) for that vector
is constructed, and the Fermi level E~(z) and BSE (per
electron) Eps(z) are determined as

EF (~)
N, =2N
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Next we investigate issue (ii), the convergence of the
BSE as a function of the number of random vectors,

Here we find that the convergence is far superior
if the global Fermi level is determined first by averag-

ing over all RV's of the DOS, N, = N f &
(p~(E))dE,

where (p~(E)) is the average over all RV's. Similarly,
gFEgs = J z (p (E))EdE. The BSE using 30 moments in

the Maxent reconstruction is shown in Fig. 2(a) using
one constraint (pp only), and in Fig. 2(b) using three
constraints (pp, pq, and p2) in the penalty function for
the random vector. The convergence to the exact result
is much faster and has a much smaller Buctuation when

-0.3820

Bandstructure Energy Eps

FIG. 1. Relative probability distribution D(Zss) that a
random vector will yield Ess as its band-structure energy. (In
all figures, the BSE is determined from a shifted and scaled
0 with eigenvalues in [

—1, I).) The random vectors are sub-
jected to (a) one, (b) two, and (c) three constraints (po, p, z,
and p2) in the penalty function.
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FIG. 3. Convergence of BSE for perfect GaAs vs number
of exact moments used.

three constraints are used. The final error in using 1000
RV's with pp, pq, and p2 constraints is 0.5 meV/atom —a
very small error.

In practical applications, one is most interested in en-
ergy difFerences between one system and another. To
study this, we gently disturb the perfect GaAs lattice by
moving the atoms in a k=0 optic mode displacement
pattern. In the perfect crystal, the vector separating
Ga and As is dp(lll)/g(3). This vector is changed to
dp(ill)/V (3) —b'(lll) where we choose 0.05 A for 6.
The Hamiltonian matrix elements are altered according
to standard direction cosine formulas and the interactions
are scaled as 1/d where d is the distance between the
atoms. The BSE for different numbers of random vec-
tors is given in Fig. 2(c), and the exact result from ma-
trix diagonalization is shown for comparison. The small
difference in BSE between the perfect crystal and the
crystal with an optic mode distortion is almost perfectly
reproduced.
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FIG. 2. Convergence of the BSE vs the number of random
vectors. (a) and (b) for perfect GaAs, and (c) is GaAs with
an optic phonon. Only the normalization constraint (po) is
imposed in (a), while three constraints are used for (b) and
(c)
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FIG. 4. Density of states for C&2p (solid line) and C2&so

(dotted line). The Fermi energy is near 0.25.

3633



VOLUME 70, NUMBER 23 PHYSICAL REVIEW LETTERS 7 JUNE 1993

-0.2275

-0.2280

-0.2285

-0.2290

-0.2295

-0.2300

-0.2305

-0, 2310

-0.2315

g -0, 2320

-0.2325

-0, 2330

C72o

&2IGO

0 250 500 750 1000
Nav (Number of Random Vectors)

the DOS is required, only a very few importance sampled
vectors are needed. Such calculations require only a few
minutes for the fullerenes described here.

In conclusion we have discussed a new statistical ap-
proach to the sparse, Hermitian matrix eigenvalue prob-
lem, and showed it to be useful in electronic structure
calculations.

We would like to acknowledge informative discussions
with S. Yang, R. M. Martin, P. Ordejon, Jose Ortega,
and Gary Adams. This work was supported in part by
the ONR under Contract No. ONR N00014-90-3-1304,
the Federation of Advanced Materials Industries, and the
Materials Research Laboratory at the University of Illi-
nois under Contract No. NSI' DMR 89 20538.

FIG. 5. Convergence of BSEvs number of importance sam-
pled vectors NRv for C72o (solid lines) and C2isp (dotted
lines).

The final factor influencing the convergence of the BSE
is the total number of moments used in the Maxent re-
construction [issue (iii)]. To investigate this we form
an exact impartial vector ( by diagonalizing the Hamil-
tonian, adding all the eigenvectors, and renormalizing
the result. We then compute from this impartial vec-
tor ( the Maxent reconstructed DOS and BSE. In Fig.
3 we show the convergence of the BSE as a function of
the number of moments extracted from ( and then used
in the Maxent reconstruction. Maxent does an exceed-
ingly good job in determining EBs even for very few mo-
ments. The maximum excursion of EBS from the exact
results (occurring near 6 moments) is only ~ 0.009/elec-
tron (0.11 eV/electron). This should be contrasted to
the energy uncertainty inherent to the RV's of 0.06 (0.8
eV/electron) by studying D(Eps).

To explore systems of unprecedented size, we com-
puted the electronic DOS and BSE of two large icosa-
hedral fullerenes: C7QQ and Csiso. We follow exactly the
procedure detailed above for GaAs, but we use the ETB
model of Ref. [17] and 35 moments. In Fig. 4 we show
the DOS for these fullerenes relaxed to their equilibrium
geometry with an empirical potential [18]. It is perhaps
not surprising that the DOS's are very close: these large
fullerenes are becoming locally very similar to graphite.
In Fig. 5 we show the convergence of the BSE versus the
number of importance sampled vectors used. We find
convergence at the level of 1 meV/electron using a few
hundred vectors. These calculations required a few hours
of CPU time on an IBM RS-6000 work station. If only
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