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The possible amount of information transfer between any source and any user via a quantum
system is bounded through the quantum entropy function. In contrast to the classical case, this
shows that infinite information transfer implies infinite entropy. The entropy bound is also applied
to obtain the ultimate quantum information transmission capacity of the free electromagnetic field

under a power and a bandwidth constraint.
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All data transmissions, in computer and communica-
tions technology as well as in other human endeavors,
have to be accomplished by physical processes subject to
the laws of physics. A fundamental issue arises as to the
maximum amount of information one can transfer with
a physical system described by quantum mechanics. By
information we mean the standard measure of quantity
of data in statistical communication theory, namely, the
Shannon entropy [1] of a data source. If a source gener-
ates one of M possible messages with equal probability
during each use, and successive generations are statis-
‘tically independent, the information rate is log, M bits
per use, or r logy M bits per second for r uses per sec-
ond. Thus, if a real variable over any interval is selected,
the source information rate is infinite per use. If such a
variable can be transmitted without error to a user, the
resulting information transfer between the source and the
user is also infinite per use. As we first discuss in the fol-
lowing, this situation prevails when the physical system
for information transfer is described by classical physics,
even in the absence of any compensating infinite magni-
tude such as infinite power, infinite entropy, or infinite
space. Only infinite (ideal) resolution is required. In this
paper we show that in quantum physics infinite informa-
tion transfer requires infinite quantum entropy, which in
turn would require some other physical magnitude to be-
come infinite. We will demonstrate that the underlying

cause of this phenomenon of infinite resolution requiring
an infinite magnitude is a manifestation of the uncer-
tainty principle. In this regard we would suggest that
quantum physics is de facto more realistic than classical
physics. Toward our end we will give a rigorous proof of
an entropy inequality that has been widely conjectured
before, but never proved in any useful generality. As
another application of this inequality in quantum com-
munication theory, we will also establish the ultimate
information carrying capacity of a free boson field.

The entropy of a discrete random variable with prob-
ability distribution p; is — ), p; logp;, which is always
non-negative. The (differential) entropy of a continuous
random variable x with probability density p(z) is

S(x) = - / p(z) log p(z)dz. (1)

As in statistical physics, S(x) has no absolute signifi-
cance—it is defined up to an arbitrary additive constant
depending on the scale one measures x. However, the
difference between two differential entropies does have
an absolute significance, as in the case of the (average)
mutual information between two continuous random vari-
ables x and Yy,

I(x;y) = S(x) - S(xly), 2)
where S(xly) = — [dyp(y) [ p(z|y) log p(zly) dz is the
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conditional (differential) entropy. The definition of mu-
tual information I(x;y) is extended to any pair of ran-
dom variables x and y by using Radon-Nikodym deriva-
tives as discussed later.

The significance of I(x,y) lies in Shannon’s coding the-
orem and its converse, which [1] states that error-free
communication via x and y is possible if and only if the
source rate per use is less than I(x;y). In the noise-free
limit of ideal resolution referred to above, I(x;y) indeed
becomes infinite since p(z|y) = 6(z — y) which makes the
conditional entropy S(x|y) negative infinite. However,
S(x) can remain finite and it often does, as in the case
of a Gaussian random variable.

Usually, x is taken to be the input of a “channel,”
and y the channel output, with the channel specified by
the conditional probability density p(y|z). The mutual
information I(x;y) is maximized with respect to p(z) to
yield the so-called capacity of the channel.

Information transmission between a source and a user
via a quantum system can be formulated as follows. Let
© be the system input alphabet one picks, which is ei-
ther a discrete set or a subset of R™ consisting of n-
dimensional real vectors or a mixed discrete-continuous
set. In general a source coder may be employed to con-
vert the data from any given data source into elements
from the alphabet © before transmission; this has no rel-
evance for our purpose and will not be discussed. Each
6 € © is to be modulated into a quantum system with
Hilbert space H of pure states, so that the system state
as presented to the user is given by a density operator pg
on H. That is, the mapping 6 — py includes all effects
of modulation, transmission, and noise. It represents the
“quantum channel” or the quantum channel plus mod-
ulation. The user determines which 6 was transmitted
through the result of a quantum measurement on the
system.

The most general description of a quantum measure-
ment that can be performed on a system is given by
the mathematical concept of a completely positive in-
strument [2] on the system state space. It can be eas-
ily shown that for extracting information, it suffices to
concentrate on the measurement probability without the
need of successive measurements on the already mea-
sured system. The most general description of quantum
measurement probability is given by the mathematical
concept of a probability-operator-valued measure (POM)
[2, 3] on the system state space. To facilitate compre-
hension, we describe a POM with the strictly speak-
ing illegitimate mathematical notation X (z) instead of
X (dz) that involves the precise mathematical definition
of a POM. [They are related by the formal decompo-
sition X (dx) = X(x)dz.] In this notation a POM X
corresponding to a measurement with output variable x,
with values x € R™, is an operator-valued generalized
function X (z) such that for each z, X(z) is a positive
(formal) self-adjoint operator and all the X(z) sum to
the identity operator, i.e.,
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X(z) >0, /X(x)da: ~ 1. 3)

When X(z) = |z)(z| with orthogonal |z)’s, the POM
X corresponds to a unique self-adjoint operator X =
JzX(z)dx obeying the function calculus f(X) =
J f(z)X (z)dz, whereas this is not satisfied for an arbi-
trary POM. This POM description, by now fairly well
known, generalizes the usual textbook description of
quantum measurements by self-adjoint operators in that
it includes the case when some “apparatus” is adjointed
to the system and commuting self-adjoint operators on
the system plus apparatus are measured to produce an
outcome referring to the system alone [2,3]. When the
POM X is measured on a system in state o, the output
probability distribution plo) is the probability distribution
of x given by

plo)(dz) = Tr[X (dz)o]. (4)

Now suppose that we are given the input variable 6
with probability distribution P(df) on the alphabet ©,
the parametrized states pp (0 € ©), and the measure-
ment described by POM X with output variable x. Then,
the conditional probability distribution of the output x
given input 6 is obtained by P(dz|6) = u[ps](dz), and
hence we have a standard information theoretical chan-
nel with conditional probability distribution ulpe](dz),
for which we can talk about the mutual information. The
amount of information transfer between the input alpha-
bet © and the user that measures POM X is described by
the mutual information I(@;x) between the random vari-
ables 8 and x. Taking account of the symmetry property
I(6; x) = I(x;0), an expression for I(@;x) is obtained as
follows. Consider the mizture of parametrized states pg,

pE/ng(d@)‘ (5)

The (unconditional) probability distribution of x is then
P(dz) = p[p](dz). The classical relative entropy of u[ps]
with respect to ulp] is given by

d
Stuleal/uie) = [ nlpolido) oz P @), (o)
where dupg]/dulp) is the Radon-Nikodym derivative of
[ps] with respect to p[p]. Then the mutual information
is given by

1(6;%) = / S(ulps]/ulp]) P(d6). )

Note that the maximum I(8;x) obtained by optimiza-
tion over P(d#) is the capacity of this information chan-
nel. When ©, pg (6 € ©), and X are allowed to vary, the
resulting maximum I(@;x) obtained for a given quan-
tum system can be referred to as the ultimate quantum
capacity of the system. The search for such maximum
quantum information transfer may be greatly facilitated
by the following entropy bound.

The entropy of a quantum state o is S(o) =
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—Tr[o log o). For arbitrary parameter 8 with probability
distribution P(df) on ©, parametrized states pg (6 € ©)
with mixture p, and POM X, the following inequality
holds.

Theorem (the entropy bound).—

Hmmsﬂm—famwww (8)

We will prove this theorem via the following general in-
equality.

The Uhlmann inequality: Let ® : Uy — U, be a unit-
preserving completely positive map from a C*-algebra
U, to a C*-algebra U,,®* : Uj — U;f the dual map,
and S(-/-) the relative entropy between two states of a
C*-algebra. Then for any two states o7 and o3 of Us,

5(2*(01)/®*(02)) < S(01/02)- (9)

This inequality (9) is proved by Uhlmann [4], general-
izing the results by Araki [5], Lindblad [6], and Umegaki
[7]. Its importance in quantum information theory has
also been noted by Ohya [8].

To prove (8) we write

S(0) = [ Sea)Pd®) = [ S(eafpP(@),  (0)

where the relative entropy between two density operators
is given by

S(o1/02) = Tr[o1 log o1 — 01 log 3]. (11)
We will show that for each 6,
S(ulpel/ulel) < S(ps/p)- (12)

From (7), (10), and (12) our bound (8) follows. To
obtain (12) from (9), let U; = C(R™), the algebra of
complex-valued continuous functions on R7”, the one-
point compactification of R™, and Uz = L(H), the al-
gebra of bounded linear operators on H. Then U} is the
space of countably additive complex-valued finite Borel
measures, and U includes the space of trace class op-
erators on H. Let ® : U; — U, be the map such that
&(f) = [ f(z)X(dz). Then the dual ®* : Uy — UY
maps a density operator o to the probability measure
Tr[X (dz)o], i.e., ®*(0) = p[o]. Under this ®, which is
trivially completely positive, the inequality (9) becomes
(12) and the proof is completed.

The entropy bound has a long and complicated history
which we can only briefly outline here. Forney [9] first
gave an interesting discussion but an incorrect proof in
an unpublished master thesis. In the published literature,
it was first explicitly conjectured by Gordon [10]. Since
then there have been a few more unpublished incomplete
or incorrect proofs. All of these appeared before POM
found its way into quantum mechanics. The one cor-
rect proof in print by Holevo [11] is restricted under the
conditions of a finite set © and POM defined over a finite-
dimensional operator *-algebra; the latter essentially re-
stricts its applicability to a finite-dimensional state space
‘H. It is clear that either one of these restrictions drasti-

cally reduces the significance of the entropy bound, and
we will see later that under such restrictions one can-
not establish the ultimate capacity limit of a quantum
channel which one can do with (8) in its full generality.

The entropy bound is, of course, not a surprising result
as it was conjectured and thought to be established many
times before. Indeed, it is a very intuitively satisfying
result. It implies in particular, since S(pg) > 0,

1(6;x) < S(p), (13)

i.e., independently of the quantum measurement one may
make, the information transfer is bounded by the quan-
tum entropy of the mixed state presented to the user as
averaged over the input alphabet [12]. Thus, whenever
there is an infinite amount of information transfer be-
tween the source and the user, the entropy S(p) would
become infinite too. This is in marked contrast to the sit-
uation in classical physics discussed above, where infinite
information transfer can occur without the (differential)
entropy becoming infinite itself. The absolute character
of the quantum entropy thus enforces the requirement
that some “physical magnitude” would become infinite
for infinite information transfer. In the following, we will
examine how this infinite entropy gives rise to an infinite
physical magnitude in some examples which are of basic
interest in their own right.

First consider the maximum possible amount of infor-
mation transfer with a single electromagnetic field mode
subject to the constraint of a given level of average pho-
tons available, i.e., we wish to pick a set ©, a probabil-
ity distribution P(df) on ©, a mapping 6 — pg, and a
measurement X, such that I(60;x) is as large as possible
subject to the constraint

/ Tra'aps] P(d6) < N, (14)

where a is the photon annihilation operator of the field
mode. Complicated as it may seem, this problem is easily
solved from the entropy bound (8) or (13) since it is well
known that the entropy of a boson field mode is maxi-
mized, under an average energy constraint, by the num-
ber of eigenstates with the exponential distribution—
the canonical ensemble of quantum statistical mechanics.
Thus, by optimizing the right-hand side of (8) and achiev-
ing the optimum, we see that I(0;x) is maximized by
using © = N, the set of natural numbers, together with
n = pp = [n)(n| (n € N), P({n}) = N*(1 + N)~(n+1),
and X = a'a. It yields the result, often conjectured or
alleged but never proved before, that the ultimate quan-
tum capacity is given by the following entropy in nats
per use per mode [1 nat = (log2)~! bits from logarithm
with base e]:

max [(0;x) = C(N) = (N+1)log(N+1)— NlogN.
(15)
It is immediate from (15) that infinite information trans-

fer in this case requires infinite N. It should be em-
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phasized that the entropy bound in its full generality is
required to establish this result (15). This is because the
state subspace satisfying Tr[a'ap] < N is infinite dimen-
sional, and, more importantly, there is no a priori reason
why a continuous © with matching measurement would
not yield a higher 1(0;x). Certainly it would classically,
as we discussed above. More specifically, one would won-
der why the use of two-photon coherent states [13] and
homodyne detection, or some other continuous observ-
able and states which involve a continuous x, may not
do better. It is here that the energy limit (14) plays a
crucial role; a highly squeezed state requires too many
photons wasted in the large noise quadrature, a require-
ment from the uncertainty principle. Similarly, phase
eigenstates also have infinite number of photons [14] and
the phase is not as good as the energy for information
transmission which was first argued by Gabor [15]. One
may not, however, conclude that it is always the energy
that is placing the limitation, as the following second ex-
ample shows.

Consider a single quantum degree of freedom with the
Hamiltonian

H= Pza (16)

where P has a spectrum equal to the real line and can
be interpreted, for example, as the momentum of an un-
bounded fermion. It is clear that under an average H
constraint,

[ itz P(as) < , (17)

an infinite information transfer is possible with, say,
© = [0,1], po = |pe)(psl, X = P, where each |pg) is
an eigenstate of P, pg # pg for 6 # @', such that (17) is
satisfied for whatever P(df) we pick, e.g., |pg| < N1/2,
The only important point here is that for an observable
with a continuous spectrum, error-free transmission is
possible via the generalized eigenstates, and the energy
constraint need not be violated when the continuous ob-
servable is itself the Hamiltonian. It would not matter if
the state is strictly confined to the Hilbert space H; that
would merely replace I(0;x) = co by I(8;x) — oo i.e.,
I(6;x) can be made larger than any specified number,
say, by approaching a Dirac delta function with Gaus-
sians of increasingly narrow widths. This result does not
contradict the entropy bound because S(p) — oo in such
limits, too [16]. The catch in this case is, of course, that
the observable Q conjugate to P would take on infinite
values as a consequence of the uncertainty principle.

We conclude by pointing out that the number-state
photon-counting capacity for the free electromagnetic
field is indeed the ultimate quantum capacity under an
average power constraint and a frequency bandwidth con-
straint. With the assumption that number states and
photon counting are used, it has been shown [17] that
the capacity in nats per second, converted from per mode
per use with a frequency band W (modes per second), is
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given by

C= /W C(e/\—h}ﬁ)df, (18)

where C(-) is given by (15) and ) is determined from the
power constraint

hf

The optimality of number states and photon count-
ing among all possible states and measurements can be
proved from (8) similar to the derivation of (15). We have
a collection of statistically independent frequency modes,
each one collectively subject to the energy constraint P T
in any time interval T. Thus, with S(p;) = 0 for a pure
state, the entropy is maximized by number states. The
limit 7' — oo can be properly taken with the help of Teo-
plitz distribution theorems, and the problem reduces to
obtaining the frequency distribution of power that max«
imizes the total entropy, which is the Bose-Einstein dis-
tribution given in (19). In the limit W — oo, we have
the infinite-bandwidth ultimate capacity [17, 18]

c- N%- (20)
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